
The Hitchhiker’s Guide to DNS Cache Poisoning

Sooel Son and Vitaly Shmatikov

The University of Texas at Austin

Abstract. DNS cache poisoning is a serious threat to today’s Internet.We de-
velop a formal model of the semantics of DNS caches, including the bailiwick
rule and trust-level logic, and use it to systematically investigate different types
of cache poisoning and to generate templates for attack payloads. We explain the
impact of the attacks on DNS resolvers such as BIND, MaraDNS,and Unbound
and their implications for several defenses against DNS cache poisoning.

Key words: DNS, cache poisoning, formal model

1 Introduction

The Domain Name System (DNS) is an essential part of the Internet. The primary
purpose of DNS is to resolve symbolic domain names to IP addresses [10,17,18]. Many
Internet security mechanisms, including host access control and defenses against spam
and phishing, implicitly or explicitly depend on the integrity of the DNS infrastructure.
Unfortunately, security was not one of the design considerations for DNS, and many
attacks on DNS were reported over the years [3,12,15,19].

Cache poisoning is arguably the most prominent and dangerous attack on DNS.
DNS cache poisoning results in a DNS resolver storing (i.e., caching) invalid or ma-
licious mappings between symbolic names and IP addresses. Because the process of
resolving a name depends on authoritative servers located elsewhere on the Internet
(see Section 2.2), DNS protocol is intrinsically vulnerable to cache poisoning [3]. An
attacker may poison the cache by compromising an authoritative DNS server or by forg-
ing a response to a recursive DNS query sent by a resolver to anauthoritative server.

Many non-cryptographic defenses (surveyed in Section 8) focus solely on blind re-
sponse forgery and attempt to solve the problem by increasing the entropy of DNS
query components such as transaction IDs, query labels, andport numbers. This makes
blind response forgery more difficult. Unfortunately, blind response forgery is just one
of the possible attack vectors for DNS cache poisoning and, unlike cryptographic solu-
tions, these defenses are vulnerable to trivial eavesdropping attacks. Therefore, they do
not address the root causes of DNS cache poisoning and provide only partial protection.

Our goal is to develop a formal model for the semantics of DNS caches and use
it to study cache poisoning attacks. Our analysis focuses onthe internal operation of
DNS resolvers and is thus complementary to the analyses of network protocols used to
deliver DNS messages, success rate of forgery attempts, network-level defenses, and so
forth. For instance, in a concurrent work [4], Bau and Mitchell formally modeled the
cryptographic operations involved in the DNSSEC protocol,discovering a vulnerability
that allows an attacker to add a forged name into a signed zone.

2 Sooel Son and Vitaly Shmatikov

By contrast, we analyze the internal bailiwick rules (used by DNS resolvers to de-
cide whether to accept a mapping from a given authority) and the trust levels of DNS
data (used by resolvers to decide whether to overwrite an existing record). The baili-
wick rule in particular, while critical for DNS security andreliability, is not part of the
DNS standard and left to the resolver implementation. Its subtleties are often exploited
by cache poisoning attacks, regardless of the actual mechanism (such as blind response
forgery) used to deliver attack packets. To the best of our knowledge, internal operations
of DNS resolvers have not been formally modeled before.

Our contributions. We explain the nature of DNS cache poisoning attacks and present
a precise, formal model of the bailiwick rule and the record overwriting mechanism
of modern DNS resolvers, including BIND v9.4.1, Unbound v1.3.4, and MaraDNS
v1.3.07.09. We use our model to systematically enumerate and analyze different types
of cache poisoning attacks and to explain the damage to different aspects of DNS res-
olution resulting from each attack. Using the ProVerif protocol analysis tool [6], we
automatically construct attack templates for all attacks in our taxonomy, verifying that
the attacks work against actual implementations.

The objective of this study is to develop a precise understanding of the semantics
of modern DNS caches, including their bailiwick rules and trust-level logic. We donot
propose a new defense against DNS response forgery since defending against specific
types of DNS compromise is largely orthogonal to our goals. (In general, the only reli-
able protection is provided by cryptographic authentication schemes such as DNSSEC;
unfortunately, these schemes are not yet deployed widely.)Instead, we use our model
to enumerate the consequences of different types of DNS forgery exploits, regardless
of whether they are perpetrated via server compromise, birthday attack, eavesdropping,
or some other attack vector. We also show that our model is useful for evaluating the
effectiveness of some non-cryptographic defenses againstDNS response forgery.

2 DNS Background

2.1 Resource record set

DNS is a distributed storage system for Resource Records (RR). Each DNS resolver
or authoritative server stores RRs in its cache or local zonefile. A Resource Record
includes a label, class, type, and data [10]. The label of an RR is a symbolic domain
name used when accessing an Internet resource [17]. The class is either IN, or CH; the
class of most RRs is IN, which means the Internet system. The type can have many
possible values, but we will focus on records of type A, CNAME, and NS. An A record
holds a mapping from a domain name to an IP address, a CNAME record holds a
mapping from a domain name to an alias, and an NS record holds amapping from a
domain name to the name of an authoritative name server for that domain. Each record
has a time-to-live (TTL) parameter and is purged from the cache once its TTL expires.

No two RRs in the cache may have the same label, class, type, and data, but it is
possible to have multiple records with the same label, class, and type. Such a group is
called a Resource Record Set (RRset).

The Hitchhiker’s Guide to DNS Cache Poisoning 3

2.2 Caching and recursive resolution

When a DNS resolver or authoritative server receives a query, it searches its cache for a
matching label. If there is no matching label in the cache, the server may instead retrieve
from the cache and return a referral response, containing anRRset of NS type whose
label is “closer” to the domain which is the subject of the query [17].

Instead of sending a referral response, the DNS resolver mayalso be configured
to initiate the same query to an authoritative DNS server responsible for the domain
name which is the subject of the query [17]. Each query is identified by a random 16-bit
transaction ID (TXID). The authoritative server can respond with an answer, a referral,
or a failed response. In general, a response is comprised of the query, answer, authority,
and additional sections. Each section may have none, one, ormultiple RRsets.

The authoritative server’s response—or a forged message pretending to be the au-
thoritative server’s response—is accepted by the DNS resolver and stored in its cache
only if the RRset of each section passes a set of conditions known as thebailiwick rule.
These conditions are not part of the DNS specification and depend on the implementa-
tion of the resolver. Furthermore, in certain circumstances (see Section 5), the received
records may evenoverwrite those already stored in the cache.

Poisoning the DNS cache by adding false records is a serious threat, but DNS
records corresponding to popular domains are likely to be already stored in the cache
prior to an attack and are thus not vulnerable to the basic forgery exploit (this ob-
servation underlies the naive defense of increasing the time-to-live parameter of these
records). It is the ability to overwrite existing records that makes DNS response forgery
such a devastating attack. To understand record overwriting, we need to understand (1)
the mechanism through which an attacker may introduce forged records into the cache
of a DNS resolver (Section 3) and (2) the bailiwick and trust-level rules that govern
addition and overwriting of records in DNS caches (Sections4 and 5).

3 DNS Response Forgery

3.1 Cache poisoning without response forgery

Before BIND adopted the bailiwick rule in 1993, the owner of any DNS authoritative
server could compromise records corresponding to any domain name [22, 23]. When
responding to a query from the resolver, a malicious authoritative server can send, in
the additional section of its response, an arbitrary mapping from any domain name
(including those outside its authority) to an IP address.

For instance, consider a malicious authoritative server for bad.com. When a client
asks its DNS resolver to resolvewww.bad.com, the resolver queries the server. The
server’s response contains in its additional section the mapping from, say,ns1.good.
com to a malicious IP address. Without the bailiwick rule (described in Section 4), this
mapping would have been cached by the resolver, even thoughgood.com was neither
part of the query, nor under the malicious server’s authority (see Fig. 2(a)).

4 Sooel Son and Vitaly Shmatikov

3.2 Blind response forgery using birthday attack

The basic DNS protocol does not authenticate responses to recursive queries. The only
checks are: (1) the query section and 16-bit transaction ID (TXID) of the response
must match those of the query, and (2) the source IP address and destination port of
the response must match, respectively, the destination IP address and source port of the
query. The first arriving UDP packet which satisfies these conditions is treated as a valid
response from the authoritative server.

Prior to recent patches [8], many DNS resolvers used a fixed port to send queries.
Therefore, with the exception of a random TXID, all values used by the resolver to
determine the validity of a packet received in response to its query are predictable. To
generate a valid-looking response, it is sufficient to guessthe TXID used in the query.

Fig. 1. Overview of the cache poisoning attack

Attacks on DNS exploiting the
“birthday paradox” have been known
since at least 2002 [21]. If the TXID
has onlyN bits of entropy (in prac-
tice, N = 16), a network attacker
needs onlyO(2

N

2) trials on average
to generate a forged response which
matches the TXID of the query and
will thus be accepted as valid by the
target resolver. The answer section
of the forgery contains a malicious
mapping from a domain name to an
IP address (see Fig. 1).

For the attack to succeed, the
forgery must arrive to the target re-
solver before the response from the
legitimate authoritative server. If the
legitimate response arrives first, it
will be cached by the resolver and until its time-to-live (TTL) expires, the resolver
will not ask the authoritative server to resolve the same domain name, preventing the
attacker from poisoning the mapping for that domain.

(a) A forged response without considering
bailiwick

(b) Kaminsky’s exploit

Fig. 2. Payloads of various cache poisoning attacks

The Hitchhiker’s Guide to DNS Cache Poisoning 5

Kaminsky’s exploit. At Black Hat 2008, Kaminsky presented a new extension of the
birthday attack [13]. While the basic mechanism is the same (using the birthday attack
to forge a response with the same transaction ID as the query), three observations make
Kaminsky’s attack more serious than “conventional” DNS forgery [19].

First, the attacker can force the target resolver to initiate a query to an authoritative
server of his choice. Second, modern attackers have enough network bandwidth to gen-
erate a large number of spoofed responses, each with a different guess of the transaction
ID. Third, the malicious “payload” of the forged response isthe additional section (as
opposed to the answer section in the conventional attack), for reasons explained below.

The basic scheme of the exploit is as follows. The attacker chooses the domain
name that he wants to compromise (e.g., www.google.com). He then queries the
target resolver with any subdomain which is not already cached on the resolver (e.g., a
non-existent subdomain such asxyz12.google.com). Because the name is not in
the cache, this causes the target resolver to send a query to the authoritative server(s)
for this domain. At this point, the attacker floods the resolver with a large number of
forged responses, each containing a different guess of the query’s transaction ID.

A typical forged response is shown in Fig. 2(b). Note that it is a referral, not an
answer, and the false information is contained in the additional section rather than the
answer section. This greatly increases the efficacy of the attack. Instead of hijacking
a mapping for a single domain name, the attack, if successful, introduces into the tar-
get resolver’s cache a false mapping for an authoritative server. Future queries from
the compromised resolver will be sent directly to an attacker-controlled IP address, en-
abling the attacker to provide malicious responses withoutblind response forgery.

If a forgery attempt fails, the attacker can immediately start a new race, using a
different domain name, and continue until he actually wins the race,i.e., a forgery with
a valid transaction ID arrives to the resolver before the legitimate answer.

3.3 Response forgery using eavesdropping

A number of recently proposed defenses against DNS cache poisoning, including
source port randomization, 0x20-bit encoding, XQID, and WSEC-DNS, fundamentally
depend on theasymmetric accessibility of the components used for authenticating re-
sponses to DNS queries [7,8,11,20].

These defenses ensure neither confidentiality of DNS queries, nor authentication of
responses (in contrast to cryptographic defenses such as DNSSEC) and thus prevent
only blind forgery. DNS remains vulnerable to trivial attacks by compromised servers
and/or network eavesdroppers: in a non-switched subnet environment, the attacker can
run an eavesdropping tool in the promiscuous mode; in a switched environment, ARP
poisoning [14] or any similar technique can be used to force all packets from the target
resolver to pass through a malicious computer on the same subnet.

4 The Bailiwick Rule

The purpose of the bailiwick rule is to prevent malicious authoritative servers from pro-
viding DNS mappings for domains outside their authority as part of a referral response

6 Sooel Son and Vitaly Shmatikov

(see Section 3.1). For example, the authoritative server for .com can return a mapping
for any.com domain, while the authoritative server forbad.com should only be able
to provide mappings for subdomains ofbad.com.

The RFC specifying the DNS protocol does not define a concretebailiwick rule.
For the purposes of this paper, we analyze the bailiwick rules of three open-source im-
plementations: BIND v9.4.1 [1], Unbound v1.3.4 [16], and MaraDNS v1.3.07.09 [24].

BIND. The complete bailiwick-checking algorithm of BIND v9.4.1 is shown in Fig. 5
in the appendix. The key data structure used to keep track of the bailiwick at any given
point in the recursive DNS resolution isQuery.zone. If a BIND resolver cannot
resolve a query locally, it finds the RRset whose label is the “closest” to the received
query among all RRsets of type NS in its cache. This label is stored inQuery.zone,
and the resolver sends the query to the name server indicatedby the NS record.

If the response holds an RRset in the answer section, the resolver caches it after
checking that its domain label matches the query. NS recordsin the authority section
are cached only if their domain label is a subdomain of or equal to Query.zone.

If the response is a referral (i.e., the answer section does not contain a record),
the resolver must resend the query to another name server, asindicated in the referral.
At this point, the bailiwick check is performed. First, the resolver checks whether the
domain label of the query is a subdomain of the label in the authority section of the
received response. If it is, the resolver next checks whether the domain label in the
authority section is a subdomain of the current value ofQuery.zone. Only if both
conditions hold, the resolver caches the NS-type RRset received in the referral.

The next step is to determine whether to cache the RRsets in the additional section of
the referral. If the domain label of each record in the additional section is a subdomain
of Query.zone, the additional section is cached; otherwise, it is not cached and the
resolver will initiate new queries for the labels of the records from the additional section.

This prevents a malicious name server from referring a queryto a name server in a
different bailiwick along with a false IP address mapping for that server (as in Fig. 2(a)),
since the resolver will not cache the additional section containing the false mapping.

Finally, the value ofQuery.zone is changed to the label of the RRset in the
authority section of the received referral response. The BIND resolver then initiates
queries for the names which were not cached in the previous steps.

Unbound. The bailiwick checking algorithm of Unbound (Fig. 6 in the appendix) is
very different from BIND. All records whose labels are out ofthe bailiwick are removed
from the received responses. The remaining records are cached, provided the response
contains at least one answer record which comes from an authoritative server.

Unbound also differs in how it decides whether a response is areferral or not. If
the label of the authority record in a response is below the resolver’s bailiwick zone,
Unbound labels the response as a referral even if there is a record in the answer section.
The resolver caches all records from the additional and authority sections of a referral
response, but, by default, does not send them to clients [26].

MaraDNS. The bailiwick logic of MaraDNS (Fig. 6 in the appendix) is significantly
simpler. MaraDNS does not cache the authority and additional section of responses con-
taining an RRset in the answer sections, thus eliminating the need to perform bailiwick

The Hitchhiker’s Guide to DNS Cache Poisoning 7

checks on them. Furthermore, even for referral responses, MaraDNS caches neither the
NS mapping from the domain name to an authoritative server name (authority section),
nor the A mapping from the latter name to an IP address (additional section). Instead,
MaraDNS simply stores an authority section with a mapping from the domain name to
the IP address. This eliminates the need to perform a bailiwick check on the name of the
authoritative server, since this name is not cached (with a potential loss in efficiency).

Differences between resolver implementations. Table 1 summarizes the differences
between DNS resolver implementations. There is an important difference between
BIND’s and Unbound’s default caching policies for RRsets inthe additional section.
To shorten query resolution times, BIND caches all such mappings, including domain
labels and IP addresses from the additional section. By default, Unbound, too, caches
the additional section, but these mappings are not sent to the client as the answer for a
query. Therefore, from the client’s viewpoint, the defaultbehavior of Unbound is sim-
ilar to that of MaraDNS. All three implementations can be compromised by different
types of cache poisoning attacks (the implementations are semantically correct, but the
protocols they use for updating the DNS cache are intrinsically weak). In Section 7, we
show which implementation is vulnerable to which attack.

Functionality BIND 9.4.1 Unbound 1.3.4MaraDNS 1.3.07
RRset trust rules O O X
Caching answer section O O O
Caching authority section from a referral response O O O
Caching authority section from an answer response O O X
Caching additional section from a referral response O O X
Caching additional section from an answer response O O X
Additional section data sent to clients Default O Default X X

Table 1. Differences between resolver implementations.

Kaminsky’s exploit and the bailiwick check. Kaminsky’s exploit does not violate the
bailiwick rule. The forged referral in this attack containsan authority section with a
(possibly fake)in-bailiwick name server, along with an additional section mapping this
server to an attacker-controlled IP address. This invalid mapping is cached by the target
BIND resolver. If the attacker wants to compromise the mapping of an existing name
server (as opposed to introducing a fake one), there is a complication. The mappings
for the name servers of popular domains tend to have long TTLs; they are likely to be
already present in the victim’s cache and must be overwritten. In Section 5, we explain
the conditions under which an existing record may be overwritten.

Unbound caches RRsets from the additional section, but, by default, does not send
them to clients. These RRsets are used internally by the resolver to find IP addresses of
authoritative servers and can be overwritten, facilitating certain attacks (see Section 7).

MaraDNS will accept the malicious authority section, but the mapping from the fake
name server to an attacker-controlled IP address will not becached. The IP address of
an authoritative server can be changed only by overwriting an existing mapping.

8 Sooel Son and Vitaly Shmatikov

5 Cache Overwriting

Cache poisoning attacks are especially dangerous because they enable the attacker not
just to add false mappings to the cache of vulnerable DNS resolvers, but also toover-
write existing mappings, including long-lived mappings for popular domains.

The rules for overwriting cache records are defined in RFC 2181 [10]. They depend
on thetrust level of an RRset. Table 2 shows trust levels used by BIND resolvers. The
trust level of an RRset contained in a response depends on whether it comes from an
authoritative server and whether the response is a referral. Trust level 8 is for records
in a local zone setup file provided by a DNS server administrator, while trust level 7 is
used by DNSSEC. We focus on records whose trust levels are from 2 to 6.

Define symbol Trust level Description
dns trust ultimate 8 This server is authoritative
dns trust secure 7 Successfully DNSSEC validated
dns trust authanswer 6 Answer from an authoritative server
dns trust authauthority 5 Received in the auth section as an authority response
dns trust answer 4 Answer from a non-authoritative server
dns trust glue 3 Received in a referral response
dns trust additional 2 Received in the add section of a response

Table 2. Trust levels in BIND 9.4.1.

BIND and Unbound. In BIND, a cached RRset is overwritten if the trust level of
the received RRset is higher or equal to the cached one and itsTTL is longer. NS-type
RRsets received in a referral are an exception: they have thetrust level 8 for the purposes
of overwriting (i.e., they always overwrite the records already present in the cache), but
are stored with the trust level 3.

In Unbound, the absolute trust levels are different, but therelative order is the same.
Therefore, we use the same trust-level model for BIND and Unbound.

MaraDNS. MaraDNS does not use trust levels. A new record contained in the response
simply overwrites the existing record. In practice, however, only NS records can be
overwritten by forged responses. Because MaraDNS does not cache the additional sec-
tion of responses, in order to overwrite an A or CNAME record the forged response
should contain the replacement mapping in the answer section and its label must be
exactly the same as the label of the record to be overwritten.Such a forgery would only
be accepted in response to a query with the same label. Observe, however, that since a
record with this label is already present in the cache, a MaraDNS resolver would never
initiate a recursive query for this label. Therefore, thereis no query that would give the
attacker an opportunity to overwrite an existing A or CNAME record.

The Hitchhiker’s Guide to DNS Cache Poisoning 9

Fig. 3. Generic model of a DNS resolver

6 Formal Model of DNS Resolver

6.1 Modeling methodology

As shown in Sections 4 and 5, the semantics of DNS caches are quite complicated.
To understand the potential impact of cache poisoning attacks, we construct a formal
model of the default bailiwick-checking and cache-overwriting rules of BIND v9.4.1
and Unbound v1.3.4. We do not build a formal model for MaraDNSbecause it does not
cache the authority and additional sections of responses containing an answer RRset and
does not use trust levels for overwriting existing records.We do show attacks against
all three implementations, including MaraDNS, in Table 4

We use the ProVerif protocol analysis tool, due to its success in practical formal ver-
ification of security protocols (e.g., [2]). The details of ProVerif are beyond the scope of
this paper and can be found in [6]. The behavior of each protocol participant is modeled
as a set of Horn clauses, which represent sending or receiving messages on specified
communication channels. ProVerif then uses a sound, resolution-based algorithm to de-
termine whether a specified property holds over all executions of the protocol.

Fig. 3 shows the abstract model of DNS resolver. We use it to check whether or
not a cached resource record with a certain label and trust level is secure against cache
poisoning conducted by the active adversary who has complete control of the network.
This attacker model may appear strong, but we emphasize onceagain that our goal is to
model theinternal behavior of DNS resolvers, not the details of the network protocol
through which DNS messages are exchanged. By modeling the network as a public
channel, we can focus on the semantics of the cache and abstract from the particulars
of the forgery method through which attacker packets are introduced.

The initial state of the model asserts that three valid records of types A, NS, and
CNAME, respectively, have been cached. Their labels are determined via network in-
puts. (In reality, the attacker can insert an arbitrary label into the cache by tricking a
client of the resolver into asking to resolve the corresponding name.) Trust levels are
specified manually. The model then receives a query from the network. If recursive res-
olution is required, the model sends out a recursive query and receives a response from
the network. The bailiwick rule in the model determines which records in the response

10 Sooel Son and Vitaly Shmatikov

should be cached. If a malicious record satisfies the bailiwick conditions, the model
asserts that a cache poisoning event has occurred.

6.2 Base data types

We use a simplified model of DNS records with only three components—type (A,
NS, or CNAME), domain name, and data—and ignore other aspects such as author-
ity RRsets in the answer section, lame resolution, and zone delegation. Events model
critical points in the resolution process. TheevInitCache event occurs when the model
is initialized. It asserts that a record is cached with a verifier-specified trust level prior to
the attack (in our analysis, we vary the trust level to determine whether or not a particu-
lar record can be overwritten). TheevRecursiveQueryStart event occurs when the cache
does not have a record matching a given query and the resolvermust send a recursive
query to an authoritative server responsible for the bailiwick zone. TheevPoison event
occurs when an invalid record passes all checks and is about to be cached.

6.3 Cache initialization

Our model assumes that the CNAME, A and NS resource records for a certain name
are already present in the cache. The model then generates a query, waits for a response
from the network, and decides whether or not the response should be cached.

The following property says that theevPoison event does not occur unless the
evInitCache event has occurred. More precisely, in the resolver which already caches
cachedns, cacheda andcachedcname labels, a resource record whose label ispoisoned-
label and whose type isrectype is cached with the trust leveltl only if there has oc-
curred anevInitCache event in which the resource record whose label wascachedlabel
and whose type wascachedtype was cached with the trust levelcachedtl.

query ev: evPoison(rectype, poisonedlabel, poisoneddata, tl,
cachedns, cacheda, cachedcname)

−→ ev: evInitCache(Record(cachedtype, cachedlabel, data),cachedtl)

6.4 Non-overwritability

Recall from Section 5 that a cached record can only be overwritten by a record with an
equal or higher trust level. The following properties model“non-overwritability” of A
records with various trust levels:

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl6)∧ tl6 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl4)∧ tl4 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl3)∧ tl3 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedns, cacheda, cachedcname)
−→ ev: evInitCache(Record(At, cacheda, validdst), tl2)∧ tl2 > tl

The Hitchhiker’s Guide to DNS Cache Poisoning 11

Fig. 4. All ways to overwrite an existing RRset in the cache.

Each of these properties says that whenever a poisoning event occurs, the target
record is already cached with a certain trust level which is higher than the trust level
of the forged response. If the property holds, the existing record cannot be overwritten.
If the property cannot be provable, then the model contains at least one path in which
the trust level of the forged record is higher than the trust level of the cached record.
Therefore, the cached record can be successfully overwritten by the forgery.

ProVerif analysis shows that in both BIND and Unbound, non-overwritability holds
only for trust levels 4 and 6. All cached records whose trust level is 2, or 3can be over-
written. For all interesting trust levels of an A or NS record, Fig. 4 shows the (automat-
ically generated) templates for malicious payloads to be used in the forged response. In
Fig. 4, we assume that the NS record ofabc.com and the A record ofwww.abc.com
are already cached by the victim resolver.

The following property is always false in our model, showingthat CNAME records
cannot be overwritten.

query ev: evPoison(CNAMEt, cachedc, invalid, tl, cachedns, cacheda, cachedc)

12 Sooel Son and Vitaly Shmatikov

6.5 Bailiwick rule

The primary purpose of the bailiwick rule is to prevent an authoritative server from
claiming the mappings from domain names belonging to other authorities. To determine
whether the bailiwick-checking logic of BIND and Unbound resolvers achieves this, we
used ProVerif to verify the following three properties:

query ev: evPoison(NSt/At/CNAMEt, targetname, dst, tl, cachedns, cacheda, cachedc)
−→ ev: evRecursiveQueryStart(query, bailiwick, bailiwickAAserver)

∧ isSubName: query, bailiwick
∧ isSubName: targetname, bailiwick

These properties say that a record can enter the cache (represented by the cache
poisoning event, since in our model all responses arrive from the network attacker)
only in response to a recursive query and iftargetname andquery are subdomains of
bailiwick. Herebailiwick is the authority name closest to the domain label in the query.

According to ProVerif, these three properties hold in our model. Therefore, the do-
main name of both legitimate and forged responses must be a subdomain of the proper
bailiwick, as determined by the DNS resolver. Note, however, that the bailiwick de-
pends on the label of the current query. An attacker may initiate a query for a domain
of his choice or manipulate the resolver into issuing such a query (e.g., by tricking one
of the resolver’s users into visiting a webpage with a link tothe domain), thus ensuring
that forged responses do not violate the bailiwick rule.

7 Taxonomy of Cache Poisoning Attacks

We use our model to systematically enumerate several types of cache poisoning at-
tacks, the corresponding payloads of forged DNS responses,and their effect on the
compromised resolver. Our taxonomy is shown in Table 3. It iscomplete for A, NS,
and CNAME records. We assume that the resolver has already fixed the bailiwick zone
(abc.com) for incoming responses. Every name which can be a target of cache poison-
ing belongs to one of three categories: domain outside abc.com, subdomain of abc.com,
or abc.com itself. There are two types of cache poisoning: adding a new name and over-
writing the mapping for an existing name. Table 3 covers all possibilities.

Table 4 summarizes the feasibility of different types of cache poisoning attacks
against different resolver implementations. Because BINDand Unbound use different
caching policies by default and MaraDNS does not cache the additional section, the
effective attack payload varies from resolver to resolver.For BIND and Unbound, our
analysis is based on our formal model and experimental attacks against the resolver
implementation. For MaraDNS, we analyzed the bailiwick-checking logic manually (it
is significantly simpler than in either BIND, or Unbound).

7.1 Adding a new CNAME record

Our model shows that the only way to add a malicious CNAME mapping to the cache
is to forge an answer section whose label is exactly same as the query (the reason is

The Hitchhiker’s Guide to DNS Cache Poisoning 13

Target domain name Type
Type of poisoning

Adding a new mapping
Overwriting an existing
mapping

Domain name outside abc.com
CNAME

Impossible (Section 6.5) Impossible (Section 6.5)A
NS

abc.com NS
Target name is already in
the cache

Possible (Section 7.4)

Subdomain of abc.com
CNAME Possible (Section 7.1) Impossible (Section 6.4)

A
Possible (Sections 7.1,
7.2, 7.5, 7.6)

Possible for trust levels 2,
3 (Sections 7.3, 6.4)

NS Possible (Section 7.4) Possible (Section 7.4)

Table 3. Taxonomy of cache poisoning attacks on BIND and Unbound (abc.com is the bailiwick
zone).

Type of attack BIND 9.4.1 Unbound 1.3.4 MaraDNS 1.3.07
Adding a new CNAME record
(Section 7.1)

Effective Effective Effective

Adding a subdomain under an
existing authority (Section 7.2)

Effective
Possible, but inef-
fective with the de-
fault policy

Impossible by forg-
ing additional data

Overwriting an existing A
record (Section 7.3)

Effective Effective Impossible∗

Overwriting an existing NS
record (Section 7.4)

Effective Effective Effective

Creating fake domains (Sec-
tion 7.5)

Effective (by forg-
ing additional sec-
tion)

Effective (requires
prior overwriting of
IP addresses of au-
thoritative servers)

Effective (requires
prior overwriting of
IP addresses of au-
thoritative servers)

Stealing a popular domain name
by hijacking subauthorities
(Section 7.6)

Effective Effective Effective

∗ IP addresses of authoritative servers can be overwritten without overwriting an A record.

Table 4. Cache poisoning attacks on different resolvers. All attacks have been tested against
actual implementations.

that the authority section contains only NS records and the additional section only A
records). This is captured by the following property:

query ev: evPoison(CNAMEt, newname, invalidlabel, tl, cachedns, cacheda, cachedc)
−→ ev: evInitCache(Record(At, cacheda, validlabel), cachedtl)

The disadvantage of this attack is that it cannot be easily perpetrated via blind, brute-
force forgery. If the attacker fails in a single race, the resolver will cache the failed label
and the attacker must change the target name. If, however, the attacker poisons the IP
addresses of authoritative servers for a certain zone, he controls all names in this zone

14 Sooel Son and Vitaly Shmatikov

and adding any CNAME mapping is trivial. The IP addresses of authoritative servers
are usually cached with the trust level 2 or 3 and can thus be overwritten (Section 7.3).

7.2 Adding a subdomain under an existing authority

This exploit adds a record for a fake subdomain under an existing authority in the vic-
tim’s cache. It is modeled by the following property:

query ev: evPoison(At, makeSubName(bad, goodZone), invalid, tl,
goodZone, makeSubName(good, goodZone), cname)

−→ ev: evInitCache(Record(At, makeSubName(good, goodZone), valid), cachetl)

As shown in Fig. 4, payloads 1 and 2 can add a new domain name to aBIND cache.
By default, the RRsets in the additional section will be usedas the answer to the query.
Payloads 2, 3, and 4 can add a new domain name to an Unbound cache, but Unbound’s
default policy does not send this information to clients.

This attack is dangerous to clients using BIND resolvers because many Web security
policies are vulnerable to attacks from subdomains. For example, many websites set the
path and domain name of cookies as, respectively, ‘/’ and thetop two levels of the site’s
domain (e.g., example.com rather thanwww10.example.com). An attacker who
uses cache poisoning to introduce a fake subdomain can use phishing to lure naive users
to this subdomain and then overwrite and/or read cookies setby legitimate subdomains.

7.3 Overwriting an existing A record

One may assume that address mappings for popular domain names are already cached
by most resolvers with the trust level 4 or 6. Therefore, theycannot be overwritten until
their TTL expires. This is the basis of a common defense against DNS forgery: simply
increase TTL for legitimate DNS records.

A cleverer attack exploits the fact that it is uncommon for clients to directly initiate
queries about authoritative name servers such asns1.google.com. Records with
addresses of authoritative name servers are typically received by resolvers as part of
referral responses, which are cached with the trust level 2 or 3. Therefore, they can be
overwritten. In our model, this is captured by the followingproperty:

query ev: evPoison(At, targetname, invaliddata, tl, ns, targetname, cname)
−→ ev: evInitCache(Record(At, targetname, validdata), tl2)∧ tl2 > tl

query ev: evPoison(At, targetname, invaliddata, tl, ns, targetname, cname)
−→ ev: evInitCache(Record(At, targetname, validdata), tl3)∧ tl3 > tl

Our formal analysis shows that payloads 1 and 2 for BIND and payloads 2, 3, and
4 for Unbound (see Fig. 4) can accomplish this attack.

This attack is dangerous to clients of both BIND and Unbound.It results in changing
the IP addresses of authoritative servers and enables the attacker to compromiseany
domain in the server’s zone. Furthermore, IP address mappings for the names of root
DNS servers such asA.ROOT-SERVERS.NET can be stored in the cache with the
trust level 2. Although there are only 13 root servers, making forgery harder, if the
attack does succeed, their addresses can be overwritten.

The Hitchhiker’s Guide to DNS Cache Poisoning 15

7.4 Overwriting an existing NS record

Unlike Kaminsky’s attack, which uses the authority and additional sections of the forged
response to compromise the mapping from a domain name to an IPaddress, forged
responses can also be used to overwrite existing NS records in the resolver’s cache [25].
In our formal model, this is represented by the following property:

query ev: evPoison(NSt, targetname, invalidlabel, tl, targetname, a, cname)
−→ ev: evInitCache(Record(NSt, targetname, validlabel), cachetl)∧ cachetl> tl

Payload 2 from Fig. 4 works against BIND, payloads 2 and 3 against Unbound.
The consequence of this attack is that any query for a domain name under the com-

promised authority is sent by the resolver directly to an attacker-controlled authoritative
server(s). This exploit is more serious than Kaminsky’s exploit because it effectively
hijacksevery domain name under the compromised authority. We emphasize that the
attacker can overwrite any NS record in the cache, even thosewith non-expired TTL.

7.5 Creating fake domains

Cache poisoning enables the attacker to insert a mapping forany domain name into the
victim resolver’s cache even if the domain does not exist in reality. For example, the
attacker can create mappings for plausible domain names such aswww.google.edu
andwww.university.gov, making it easier to carry out phishing attacks. To stage
this exploit, the forged packet must look like a valid response from the authoritative
server for a top-level domain such as.edu or .gov. Against BIND, it is sufficient to
forge RRsets in the additional section. Technically, the attack is modeled by the same
rules and uses the same payloads as in Section 7.2.

The attack against Unbound is more sophisticated because Unbound by default does
not send the additional section to clients. The attacker must change the authority section
for the target zone or the IP addresses of the zone’s authoritative servers. Once that’s
done, adding a new name under this zone is trivial. Technically, this attack is modeled
by the same rules and uses the same payloads as in Section 7.3 (respectively, 7.4).

7.6 Hijacking a popular domain via a sub-authority

A common objective of DNS attacks is to compromise the mappings for popular domain
names such aswww.paypal.com andwww.google.com. As mentioned above,
such mappings are difficult to compromise because they are likely to be already cached
with a long TTL. In practice, popular domain names are usually mapped to subdomains
via long-lived CNAME records. For example,www.google.com may be mapped
to www.l.google.com. Even if the attacker succeeds in forging an A record which
mapswww.google.com to a malicious IP address, the resolver will use the unexpired
CNAME record rather than the forged A record, foiling the attack.

Subdomain names, however, are mapped to actual IP addressesby A records with
relatively short TTL values. For example, the record mapping www.l.google.com
to an IP address may have a 300-second TTL. Suppose the attacker poisons the authority

16 Sooel Son and Vitaly Shmatikov

section forl.google.com. Once the A record forwww.l.google.com expires,
the victim will ask an attacker-controlled server to resolvewww.l.google.com, giv-
ing him complete control over the mapping. This attack is effective against both BIND
and Unbound because it targets the authority section of a zone or the IP address of
the zone’s authoritative server, not the records in the additional section. Therefore, Un-
bound’s default policy does not prevent the attack. Technically, this attack is modeled
by the same rules and uses the same payloads as in Section 7.3 (respectively, 7.4).

8 Defenses

The objective of our formal model is to understand the natureand impact of cache poi-
soning attacks at the level of DNS resolvers,not the protocol through which poisoned
packets are delivered. By contrast, the defenses surveyed below (with the exception
of cryptographic defenses) focus solely on preventing blind response forgery, which is
simply one of the many vectors for cache poisoning attacks. Therefore, they are largely
complementary and orthogonal to the goals of this paper.

Cryptographic solutions include DNSSEC [9] and DNSCurve [5]. DNSSEC uses
digital signatures to authenticate and protect integrity of responses to DNS queries. So
far, cryptographic solutions have not been widely deployeddue to their impact on DNS
performance, as well as political and infrastructural issues.

The most popular non-cryptographic defense against blind response forgery is UDP
source port randomization [8]. It increases entropy of recursive DNS queries by ran-
domizing the source port number in addition to the transaction ID, thus making the
birthday attack more difficult. This patch depends on the configuration of the local net-
work such as the firewall imposing strict constraints on inbound connections. Other
solutions aiming to prevent blind response forgery by increasing entropy of queries
are 0x20-bit encoding [7], which randomizes capitalization of letters in the query (the
amount of entropy depends on the length of the query), and WSEC-DNS [20] and
XQID [11], which use a challenge-response scheme with random nonces.

While these solutions may be effective for blocking a particularly dangerous attack
vector (namely, blind response forgery), they do not actually authenticate responses to
recursive DNS queries and should be viewed only as a temporary patch until proper au-
thentication mechanisms are deployed. As long as there exist other attack vectors (see
Section 3) and modern resolver implementations such as BINDand Unbound cache
information provided in the authority and additional sections of unauthenticated re-
sponses (see Section 4), DNS cache poisoning will remain a serious issue.

Other proposed solutions include increasing TTLs of legitimate records and limit-
ing the number of simultaneous recursive queries (the latter to decrease the number of
simultaneous races that may be staged by the attacker). Our model helps evaluate such
defenses because their efficacy depends on a detailed understanding of the semantics
of DNS caches. For example, our analysis shows that increasing TTL does not help
against a large class of attacks that involve overwriting ofexisting DNS records.

The Hitchhiker’s Guide to DNS Cache Poisoning 17

9 Conclusion

We presented a formal model of DNS cache semantics, including the bailiwick and
trust-level rules used by common resolver implementations, and analyzed it with the
ProVerif protocol analysis tool. The result is a comprehensive taxonomy of cache poi-
soning attacks, showing (1) which parts of the cache can be poisoned, (2) conditions
necessary for each attack, and (3) consequences of each attack. Furthermore, our anal-
ysis enabled us to produce payload templates for each attack. We argue that our formal
model is an essential tool for understanding the subtle caching rules used by modern
DNS resolvers and developing robust defenses against DNS cache poisoning.

References

1. Internet Systems Consortium BIND 9.4.1. http://www.isc.org/
downloadtables.

2. M. Abadi and B. Blanchet. Computer-assisted verificationof a protocol for certified email.
Sci. Comput. Program., 58(1-2):3–27, 2005.

3. D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC 3833
(Informational), August 2004.

4. J. Bau and J. Mitchell. A security evaluation of DNSSEC with NSEC3. InNDSS, 2010.
5. D.J. Bernstein. DNSCurve.http://DNSCurve.org.
6. B. Blanchet. Automatic verification of correspondences for security protocols.J. Computer

Security, 2009.
7. D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee. Increased DNS forgery resis-

tance through 0x20-bit encoding. InCCS, 2008.
8. C. R. Doughety. Vulnerability note vu#800113, 2008.https://www.kb.cert.org/

vuls/id/800113.
9. D. Eastlake. Domain Name System Security Extensions. RFC2535 (Proposed Standard),

March 1999. Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs 2931, 3007, 3008,
3090, 3226, 3445, 3597, 3655, 3658, 3755, 3757, 3845.

10. R. Elz and R. Bush. Clarifications to the DNS Specification. RFC 2181 (Proposed Standard),
July 1997. Updated by RFCs 4035, 2535, 4343, 4033, 4034.

11. J. Høy. Anti DNS spoofing - extended query ID (XQID), April2008. http://www.
jhsoft.com/dns-xqid.htm.

12. C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting browsers from DNS
rebinding attacks. InCCS, 2007.

13. D. Kaminsky. Black ops 2008-it’s the end of the cache as weknow it. Presented at BlackHat
2008, 2008.

14. T. King. Packet sniffing in a switched environment, August 2002. http://www.sans.
org/reading_room/whitepapers/networkdevs/.

15. A. Klein. BIND 9 DNS cache poisoning, March 2007.http://www.trusteer.com/
bind9dns.

16. NLnet Labs. Unbound 1.3.4.http://www.unbound.net/download.html.
17. P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Standard), November

1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034,
4035, 4343, 4035, 4592.

18. P.V. Mockapetris. Domain names - implementation and specification. RFC 1035 (Standard),
November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982,1995, 1996, 2065, 2136,
2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343.

18 Sooel Son and Vitaly Shmatikov

19. M. Olnet, P. Mullen, and K. Miklavcic. Dan Kaminsky’s 2008 DNS vulnera-
bility, 2008. http://www.ietf.org/mail-archive/web/dnsop/current/
pdf2jgx6rzxN4.pdf.

20. R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. WSEC DNS:Protecting recursive DNS
resolvers from poisoning attacks. InDSN-DCCS, 2009.

21. V. Sacramento. Vulnerability in the sending requests control of Bind version 4 and 8 al-
lows DNS spoofing, November 2002.http://www.rnp.br/cais/alertas/2002/
cais-ALR-19112002a.html.

22. C. Schuba. Addessing weaknesses in the domain name system protocol, 1993. http:
//ftp.cerias.purdue.edu/pub/papers/christoph-schuba/.

23. Secure Works. DNS cache poisoning - the next generation,2007. http://www.
secureworks.com/research/articles/dns-cache-poisoning.

24. S. Trenholme. MaraDNS 1.3.07.09.http://www.maradns.org.
25. Computer Academic Underground. http://www.caughq.org/exploits/

CAU-EX-2008-0003.txt.
26. W. Wijngaards. Resolver side mitigations, August 2008.http://tools.ietf.org/

html/draft-wijngaards-dnsext-resolver-side-mitiga%tion-00.

The Hitchhiker’s Guide to DNS Cache Poisoning 19

Fig. 5. Bailiwick-checking algorithm of BIND (shaded shapes are implementation-specific).

20 Sooel Son and Vitaly Shmatikov

Fig. 6. Bailiwick-checking algorithm of Unbound and MaraDNS (shaded shapes are
implementation-specific).

The Hitchhiker’s Guide to DNS Cache Poisoning 21

A BIND resolver model
(***
* *
* BIND DNS resolver verifier *
* *
***)

param redundantHypElim = beginOnly.
param traceBacktracking = false.
param traceDisplay = long.

free net.
fun NSt/0. fun At/0. fun CNAMEt/0.
fun zeroStage/0. fun oneStage/0.

data ValidIP/1. data InvalidIP/1.
data ValidDN/1. data InvalidDN/1.
data AA/1. data nil/0. data Record/3.

reduc GetSrc (Record(dmnSrc, target, recType)) = dmnSrc.
reduc GetDst (Record(dmnSrc, target, recType)) = target.
reduc GetType (Record(dmnSrc, target, recType)) = recType.
reduc GetDnDst (Record(dmnSrc, ValidDN(target), recType)) = target.

data Response/4.
reduc GetAnswer (Response(q1, Record(a1,a2,a3), Record(au1,au2,NSt), Record(ad1,ad2,At)))
= Record(a1,a2,a3).
reduc GetAuth (Response(q1, Record(a1,a2,a3), Record(au1,au2,NSt), Record(ad1,ad2,At)))
= Record(au1,au2,NSt).
reduc GetAdd (Response(q1, Record(a1,a2,a3), Record(au1,au2,Nst), Record(ad1,ad2,At)))
= Record(ad1,ad2,At).
data emptyset/0.

(* Predicate checking whether it is valid or not *)
pred checkrec/1.
clauses

checkrec: Record(x, InvalidIP(ip), At);
checkrec: Record(x, InvalidDN(dn), NSt);
checkrec: Record(x, InvalidDN(dn), CNAMEt).

pred isInvalid/1.
clauses

isInvalid:InvalidIP(ip);
isInvalid:InvalidDN(dn).

data zero/0. data succ/1.

pred ga/2.
clauses
ga:succ(x),x;
ga:x,y -> ga:succ(x),y.

data true/0.
data mkName/1. data seedRoot/0.
data dnmSeed/0. data cnmSeed/0. data dnmIP/0.

data ERRORID0/0. data ERRORID1/0. data ERRORID2/0.
data ERRORID3/0. data ERRORID4/0. data ERRORID5/0.
data ERRORID6/0. data ERRORID7/0. data ERRORID8/0.
data AAFLAG/0.

data makeSubName/2.
pred isSubName/2.
clauses

isSubName: x, x;
isSubName: makeSubName(z, x), x;
isSubName: x, y -> isSubName: makeSubName(z, x), y.

(* Non-overwritabilities in Section 6.3 for A *)
(* query ev: evPoison(At, cached_src_a, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, lv.
(TRUE: in case, v6,v4 is true, FALSE: in case: v3{E7},v2{E2,E5,E7})

*)

(* Non-overwritabilities in Section 6.3 for CNAME *)
(* query ev: evPoison(CNAMEt, cached_src_cname, dst, lv,
cached_src_ns, cached_src_a, cached_src_cname, eid).
(Impossible in every case)

*)

(* Properties in Section 6.4 *)
(* query ev: evPoison(NSt, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>

ev: recursiveQueryStart(y, zone, zone_target)
& isSubName: x, zone & isSubName: y, zone.

query ev: evPoison(At, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>

ev: recursiveQueryStart(y, zone, zone_target)

22 Sooel Son and Vitaly Shmatikov

& isSubName: x, zone & isSubName: y, zone.

query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>

ev: recursiveQueryStart(y, zone, zone_target)
& isSubName: x, zone & isSubName: y, zone.

*)

(* Properties in Section 7.1 *)
(* query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==>ev: evInitCache(Record(target, validIP, At), lva).

*)

(* Properties in Section 7.2 *)
(* query ev: evPoison(At, makeSubName(bad, goodAuth), invalidIP, lv,
goodAuth, makeSubName(good, goodAuth), cached_src_cname, eid) ==>
ev: evInitCache(Record(makeSubName(good, goodAuth), validIP, At), lva).
ERRORID 0,2,3,5,7

*)

(* Properties in Section 7.3 *)
(* query ev: evPoison(At, cached_src_a, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, lv.
(FALSE: in case: v3{E7}, v2{E2,E5,E7})

*)

(* Properties in Section 7.4 *)
(* query ev: evPoison(NSt, cached_src_ns, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_ns, cached_dst_ns, NSt), lvns) & ga: lvns, lv.
(FALSE in case any lvns lower than v6: v5{E1},v3{E1},v2{E1,E4})

*)

let processResolver =
let v0 = succ(zero) in let v1 = succ(v0) in
let v2 = succ(v1) in let v3 = succ(v2) in
let v4 = succ(v3) in let v5 = succ(v4) in
let v6 = succ(v5) in let v7 = succ(v6) in
let v8 = succ(v7) in

new currentState;

(
(
(* Initialize a cache state. Based on this state, Resolver model makes a decision *)
(* At the initial state, the model caches three records:A,NS,CNAME *)

new magicZONE;
out(net, magicZONE);
in (net, (initNSlabel, initClabel, initAlabel));

let nsRoot =
Record(initNSlabel, ValidDN(dnmSeed), NSt) in (* Make a NS type record with a domain name and specified IP address *)
let aRoot =
Record(initAlabel, ValidIP(dnmIP), At) in (* Make a A type record with a domain name and specified IP address *)
let cnameRoot =
Record(initClabel, ValidDN(cnmSeed), CNAMEt) in (* In special case for modeling CNAME record in cache *)

(* Assert an event declaring cached records with certain trust levels. *)
(* Before starting the model, User MUST specify the trust level of each record. *)

event evInitCache(aRoot, v6); (* The trust level of A record can be or 6, 4, 3 or 2 *)
event evInitCache(nsRoot, v5); (* The trust level of NS record can be or 5, 3 or 2 *)
event evInitCache(cnameRoot, v6); (* The trust level of CNAME record can be or 6 or 4 *)

(* currentState is a private internal channel, It is used for passing cached information to resolving process *)
out(currentState, (zeroStage, cnameRoot, aRoot, nsRoot, magicZONE))

)
| (

(* Get cache information from init process *)
in(currentState, (=zeroStage, cachedCNAMErecord, cachedArecord, cachedNSrecord, mZONE));
(* Get a query request from open channel network.*)
!in(net, (makeSubName(inputname, inputzone), inputtype));

let input = makeSubName(inputname, inputzone) in

event revQuery(input , inputtype); (* Assert an event that a query arrived *)

(* If there is a cached CNAME type record whose label is same as a A or CNAME type query then, resolution ends *)
if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), CNAMEt, CNAMEt) then
(event queryResolved(input, inputtype))
else if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), At, CNAMEt) then
(event queryResolved(input, inputtype))
(* If there is a cached NS type record whose label is same as a NS type query then, resolution ends *)
else if (input, inputtype) = (GetSrc(cachedNSrecord), NSt) then
(event queryResolved(input, inputtype))
(* If there is no record matching to a given query name and type, a recursive query starts. *)
else if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) then
(

let srcNSrecord = GetSrc(cachedNSrecord) in

(* the label of a received query is subdomain of cached NS, other NS:mZONE or no records *)

The Hitchhiker’s Guide to DNS Cache Poisoning 23

if input = srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if isSubName: input, srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if input = mZONE then
out(currentState, (oneStage, mZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if isSubName: input, mZONE then
out(currentState, (oneStage, mZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else event resolvingFailed(input)
) (* if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) *)
else (event queryResolved(input, inputtype))

)
| (

!in(currentState, (=oneStage, srcLabelCachedNS, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord));

new dstLabelCachedNS;
(* The query must be a subdomain of ZONE determined by a resolver, otherwise it’ll fail! *)
if isSubName: input, srcLabelCachedNS then
(

(* Because, there is no data, the model start a recursive query. *)
out(net, (input, inputtype));
event recursiveQueryStart(input, srcLabelCachedNS, dstLabelCachedNS);

(* And now waiting a response from a AA *)
in(net, (Response(=input,

b, (*Record(=input, ans_target, =inputtype),*)
Record(auth_name, auth_target, =NSt),
Record(add_name, add_target, =At)), aa));

let ans = b in
let auth = Record(auth_name, auth_target, NSt) in
let add = Record(add_name, add_target, At) in

(* Let’s check the answer section of the response *)
if GetSrc(ans) <> nil then
(

if (input,inputtype) = (GetSrc(ans),GetType(ans)) then
(

if aa = AAFLAG then
(

(* Check the validity of reponses. But, in this point, our model resolver has a power to detect the validity of a response. *)
if checkrec: ans then

event evPoison(GetType(ans), GetSrc(ans), GetDst(ans), v6,
GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID0);

if isSubName: GetSrc(auth), srcLabelCachedNS then
(

if checkrec: auth then
event evPoison(NSt, GetSrc(auth), GetDst(auth), v5,

GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID1)

else
(

if GetDst(auth) = GetSrc(add) then
if isSubName: GetSrc(add), srcLabelCachedNS then

if checkrec: add then
event evPoison(GetType(add), GetSrc(add), GetDst(add), v2,

GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID2)

)
) (* if isSubName: GetSrc(auth), srcLabelCachedNS then *)

) (* if aa = AAFLAG then *)
else (* if a received reponse is not from an authroritative server *)
(

if checkrec: ans then
event evPoison(GetType(ans), GetSrc(ans), GetDst(ans), v4,

GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID3);

if isSubName: GetSrc(auth), srcLabelCachedNS then
(

if checkrec: auth then
(if aa <> AAFLAG then

event evPoison(NSt, GetSrc(auth), GetDst(auth), v2,
GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID4)

)
else
(

if GetDst(auth) = GetSrc(add) then
if isSubName: GetSrc(add), srcLabelCachedNS then

if checkrec: add then
event evPoison(GetType(add), GetSrc(add), GetDst(add), v2,

GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID5)

)
)

)(* else aa = AAFLAG *)
) (* if input = GetSrc(ans) then *)

24 Sooel Son and Vitaly Shmatikov

) (* if GetSrc(ans) <> nil then *)
else if GetSrc(ans) = nil then
(

if isSubName: input, GetSrc(auth) then
(

if GetSrc(auth) <> srcLabelCachedNS then
(

if isSubName: GetSrc(auth), srcLabelCachedNS then
(

if checkrec: auth then
(

event evPoison(NSt, GetSrc(auth), GetDst(auth), v8,
GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID6)

)
else (* if checkrec: auth then *)
(

(* Here, We cache the received NS record because it is valid! *)
if isSubName: GetSrc(add), srcLabelCachedNS then

if GetDst(auth) = GetSrc(add) then
if checkrec: add then

event evPoison(GetType(add), GetSrc(add), GetDst(add), v3,
GetSrc(cachedNSrecord), GetSrc(cachedArecord),
GetSrc(cachedCNAMErecord), ERRORID7)

) (* if checkrec: auth then *)
) (* if isSubName: GetSrc(auth), srcLabelCachedNS then *)

) (* if GetSrc(c) <> ZONE *)
else (* if GetSrc(c) = ZONE *)
(

event NSrecordAlreadyCached(GetSrc(auth))
) (* else for if GetSrc(c) <> ZONE *)

) (* isSubName: input, GetSrc(auth) *)
) (* if GetSrc(ans) = nil then *)

) (* if isSubName: input, srcLabelCachedNS then *)
else
(

(* We have no AA for this query, Therefore, the query is failed. *)
event resolvingFailed(input)

)
)

).

process
processResolver

The Hitchhiker’s Guide to DNS Cache Poisoning 25

B Unbound resolver model
(***
* *
* Unbound DNS resolver verifier *
* *
***)

param redundantHypElim = beginOnly.
param traceDisplay = long.
param traceBacktracking = false.

fun NSt/0. fun At/0. fun CNAMEt/0.
fun zeroStage/0. fun oneStage/0.

fun ansChID/0. fun authChID/0. fun addChID/0.

data ValidIP/1. data InvalidIP/1.
data ValidDN/1. data InvalidDN/1.
data AA/1. data nil/0. data Record/3.

reduc GetSrc (Record(dmnSrc, target, recType)) = dmnSrc.
reduc GetDst (Record(dmnSrc, target, recType)) = target.
reduc GetType (Record(dmnSrc, target, recType)) = recType.
reduc GetDnDst (Record(dmnSrc, ValidDN(target), recType)) = target.

data Response/4.
reduc GetAnswer (Response(q1, Record(a1,a2,a3), Record(au1,au2,NSt), Record(ad1,ad2,At)))

= Record(a1,a2,a3).
reduc GetAuth (Response(q1, Record(a1,a2,a3), Record(au1,au2,NSt), Record(ad1,ad2,At)))

= Record(au1,au2,NSt).
reduc GetAdd (Response(q1, Record(a1,a2,a3), Record(au1,au2,Nst), Record(ad1,ad2,At)))

= Record(ad1,ad2,At).

free net.
data emptyset/0.

(* Predicate checking whether it is valid or not *)
pred checkrec/1.
clauses

checkrec: Record(x, InvalidIP(ip), At);
checkrec: Record(x, InvalidDN(dn), NSt);
checkrec: Record(x, InvalidDN(dn), CNAMEt).

pred isInvalid/1.
clauses

isInvalid:InvalidIP(ip);
isInvalid:InvalidDN(dn).

data zero/0. data succ/1.

pred ga/2.
clauses

ga:succ(x),x;
ga:x,y -> ga:succ(x),y.

data true/0. data mkName/1.
data seedRoot/0. data dnmSeed/0. data dnmIP/0.

data ERRORID0/0. data ERRORID1/0. data ERRORID2/0.
data ERRORID3/0. data ERRORID4/0. data ERRORID5/0.
data ERRORID6/0. data ERRORID7/0. data ERRORID8/0.
data ERRORID9/0.
data AAFLAG/0. data EXIST/0. data NONEXIST/0.

data makeSubName/2.
pred isSubName/2.
clauses

isSubName: x, x;
isSubName: makeSubName(z, x), x;
isSubName: x, y -> isSubName: makeSubName(z, x), y.

(* Non-overwritabilities in Section 6.3 for A *)
(* query ev: evPoison(At, cached_src_a, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, lv.
(TRUE: in case, v6,v4 is true, FALSE: in case: v3{E7,E8-1,E9-1},v2{E7,E8,E9})

*)

(* Non-overwritabilities in Section 6.3 for CNAME *)
(* query ev: evPoison(CNAMEt, cached_src_cname, dst, lv,

cached_src_ns, cached_src_a, cached_src_cname, eid).
(Impossible in every case)

*)

(* Properties in Section 6.4 *)
(* query ev: evPoison(NSt, x, dst, lv, cached_src_ns,

cached_src_a, cached_src_cname, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)

& isSubName: x, zone & isSubName: y, zone.

26 Sooel Son and Vitaly Shmatikov

query ev: evPoison(At, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>

ev: recursiveQueryStart(y, zone, zone_target)
& isSubName: x, zone & isSubName: y, zone.

query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>

ev: recursiveQueryStart(y, zone, zone_target)
& isSubName: x, zone & isSubName: y, zone.

*)

(* Properties in Section 7.1 *)
(* query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(target, validIP, At), lva).
ERRORID8, ERRORID7, ERRORID6

*)

(* Properties in Section 7.2 *)
(* query ev: evPoison(At, makeSubName(bad, goodAuth), invalidIP, lv,

goodAuth, makeSubName(good, goodAuth), cached_src_cname, eid) ==>
ev: evInitCache(Record(makeSubName(good, goodAuth), validIP, At), lva).

ERRORID 0, 1, 9, 8, 7

*)

(* Properties in Section 7.3 *)
(* query ev: evPoison(At, cached_src_a, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, lv.
(TRUE: in case, v6,v4 is true, FALSE: in case: v3{E7,E8-1,E9-1},v2{E7,E8,E9})

*)

(* Properties in Section 7.4 *)
(* query ev: evPoison(NSt, cached_src_ns, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)

==> ev: evInitCache(Record(cached_src_ns, cached_dst_ns, NSt), lvns) & ga: lvns, lv.
(FALSE in case any lvns lower than v6: v5{E4,E5-1},v3{E4,E5-1},v2{E4,E5})

*)

let processCC =
let v0 = zero in let v1 = succ(v0) in
let v2 = succ(v1) in let v3 = succ(v2) in
let v4 = succ(v3) in let v5 = succ(v4) in
let v6 = succ(v5) in let v7 = succ(v6) in
let v8 = succ(v7) in

new currentState;
new ansChannel;
new authChannel;
new addChannel;

event StartResolver(currentState);

(
(
(* Initialize a cache state. Based on this state, Resolver model makes a decision *)
(* At the initial state, the model caches three records:A,NS,CNAME *)

new magicZONE;

out(net, magicZONE);
in (net, (initNSlabel, initClabel, initAlabel));

let nsRoot =
Record(initNSlabel, ValidDN(dnmSeed), NSt) in (* Make a NS type record with a domain name and specified IP address *)
let aRoot =
Record(initAlabel, ValidIP(dnmIP), At) in (* Make a A type record with a domain name and specified IP address *)
let cnameRoot =
Record(initClabel, ValidDN(cnmSeed), CNAMEt) in (* In special case for modeling CNAME record in cache *)

(* Assert an event declaring cached records with certain trust levels. *)
(* Before starting the model, User MUST specify the trust level of each record. *)

event evInitCache(aRoot, v6); (* The trust level of A record can be or 6, 4, 3 or 2 *)
event evInitCache(nsRoot, v5); (* The trust level of NS record can be or 5, 3 or 2 *)
event evInitCache(cnameRoot, v6); (* The trust level of CNAME record can be or 6 or 4 *)

(* currentState is a private internal channel, It is used for passing cached information to resolving process *)
out(currentState, (zeroStage, cnameRoot, aRoot, nsRoot, magicZONE))

)
| (

(* Get cache information from init process *)
in(currentState, (=zeroStage, cachedCNAMErecord, cachedArecord, cachedNSrecord, mZONE));
(* Get a query request from open channel network.*)
!in(net, (makeSubName(inputname, inputzone), inputtype));

let input = makeSubName(inputname, inputzone) in

event revQuery(input , inputtype); (* Assert an event that a query arrived *)

(* If there is a cached CNAME type record whose label is same as a A or CNAME type query then, resolution ends *)
if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), CNAMEt, CNAMEt) then
(event queryResolved(input, inputtype))
else if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), At, CNAMEt) then
(event queryResolved(input, inputtype))

The Hitchhiker’s Guide to DNS Cache Poisoning 27

(* If there is a cached NS type record whose label is same as a NS type query then, resolution ends *)
else if (input, inputtype) = (GetSrc(cachedNSrecord), NSt) then
(event queryResolved(input, inputtype))
(* If there is no record matching to a given query name and type, a recursive query starts. *)
else if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) then
(

let srcNSrecord = GetSrc(cachedNSrecord) in

if input = srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if isSubName: input, srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if input = mZONE then
out(currentState, (oneStage, mZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else if isSubName: input, mZONE then
out(currentState, (oneStage, mZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))

else event resolvingFailed(input)
) (* if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) *)
else
(event queryResolved(input, inputtype))

)
| (

!in(currentState, (=oneStage, srcLabelCachedNS, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord));

new dstLabelCachedNS;

(* The query must be a subdomain name of zone determined by a resolver, otherwise it’ll fail! *)
if isSubName: input, srcLabelCachedNS then
(

let bailiwickZone = srcLabelCachedNS in

(* Because, there is no data, the model start a recursive query. *)
out(net, (input, inputtype));

event recursiveQueryStart(input, srcLabelCachedNS, dstLabelCachedNS);

(* And now waiting a response from a AA *)
in(net, (Response(=input, b,

Record(auth_name, auth_target, =NSt),
Record(add_name, add_target, =At)), aa));

let ans = b in
let auth = Record(auth_name, auth_target, NSt) in
let add = Record(add_name, add_target, At) in

(
(

out(ansChannel, (ansChID , input, inputtype, ans , aa,
bailiwickZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))

)
| (

if ans <> nil then
out(authChannel, (authChID , input, inputtype, EXIST, auth, aa,

bailiwickZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)

| (
if ans <> nil then

out(addChannel, (addChID , input, inputtype, EXIST, auth, add, aa,
bailiwickZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))

)
| (

if ans = nil then
out(authChannel, (authChID , input, inputtype, NONEXIST , auth , aa,

bailiwickZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)

| (
if ans = nil then

out(addChannel, (addChID , input, inputtype, NONEXIST , auth , add, aa,
bailiwickZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))

)
)

) (* if isSubName: input, srcLabelCachedNS then *)
)

| (
(* Internal Answer Channel *)
!in (ansChannel, (=ansChID, inputR, inputtypeR, ansR, aaR, bailiwickZoneR,

cachedNSrecordR, cachedArecordR, cachedCNAMErecordR));

if GetType(ansR) <> NSt then
(

if ansR <> nil then
(

if (inputR, inputtypeR) = (GetSrc(ansR), GetType(ansR)) then
(

if isSubName: GetSrc(ansR), bailiwickZoneR then
(

if aaR = AAFLAG then
(

if checkrec: ansR then

28 Sooel Son and Vitaly Shmatikov

event evPoison(GetType(ansR), GetSrc(ansR), GetDst(ansR), v6,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID0)

)
else if checkrec: ansR then

event evPoison(GetType(ansR), GetSrc(ansR), GetDst(ansR), v4,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID1)

)
)
else if (inputR, inputtypeR, GetType(ansR)) = (GetSrc(ansR), At, CNAMEt) then
(

if isSubName: GetSrc(ansR), bailiwickZoneR then
(

if aaR = AAFLAG then
(

if checkrec: ansR then
(

event evPoison(CNAMEt, GetSrc(ansR), GetDst(ansR), v6,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID2)

)
)
else if checkrec: ansR then

event evPoison(CNAMEt, GetSrc(ansR), GetDst(ansR), v4,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID3)

)
) (* else if (inputR, inputtypeR, GetType(ansR)) = (GetSrc(ansR), At, CNAMEt) then *)

) (* if (inputR, inputtypeR) = (GetSrc(ansR), GetType(ansR)) then *)
) (* if GetType(ansR) <> NSt then *)

)
| (

(* Auth Channel *)
!in (authChannel, (=authChID, inputR, inputtypeR, ansR, authR, aaR, bailiwickZoneR,

cachedNSrecordR, cachedArecordR, cachedCNAMErecordR));

if isSubName: GetSrc(authR), bailiwickZoneR then
(

if (ansR,aaR) = (EXIST,AAFLAG) then
(

if checkrec: authR then (* trust_auth_AA *)
event evPoison(NSt, GetSrc(authR), GetDst(authR), v5,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID4)
) (* if (ansR,aaR) = (EXIST,AAFLAG) then *)
else if GetSrc(authR) = bailiwickZoneR then
(

if checkrec: authR then (* trust_auth_AA *)
(

if aaR = AAFLAG then
event evPoison(NSt, GetSrc(authR), GetDst(authR), v5,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID5)
else

event evPoison(NSt, GetSrc(authR), GetDst(authR), v2,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID5)

)
)
else if isSubName: inputR, GetSrc(authR) then
(

if checkrec: authR then (* trust_auth_AA *)
(

if aaR = AAFLAG then
event evPoison(NSt, GetSrc(authR), GetDst(authR), v5,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID6)
else

event evPoison(NSt, GetSrc(authR), GetDst(authR), v2,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID6)

)
)
else
(

event cachingAuthfail(authR)
)

) (* if isSubName: GetSrc(authR), bailiwickZoneR then *)
)

| ((* Add Channel *)
!in (addChannel, (=addChID, inputR, inputtypeR, ansR, authR, addR, aaR, bailiwickZoneR,

cachedNSrecordR, cachedArecordR, cachedCNAMErecordR));

if isSubName: GetSrc(authR), bailiwickZoneR then
if isSubName: GetSrc(addR), bailiwickZoneR then

if GetSrc(addR) = GetDst(authR) then
(

event guideEvent3();

if (ansR,aaR) = (EXIST,AAFLAG) then
(

if checkrec: addR then
event evPoison(At, GetSrc(addR), GetDst(addR), v3,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID7)
)

(* else if isSubName: bailiwickZoneR, GetSrc(authR) then *)
else if GetSrc(authR) = bailiwickZoneR then

The Hitchhiker’s Guide to DNS Cache Poisoning 29

(
if checkrec: addR then
(

if aaR = AAFLAG then
event evPoison(At, GetSrc(addR), GetDst(addR), v3,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID8)
else

event evPoison(At, GetSrc(addR), GetDst(addR), v2,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID8)

)
)

(* else if isSubName: GetSrc(addR), bailiwickZoneR then *)
else if isSubName: inputR, GetSrc(authR) then
(

if inputR <> GetSrc(authR) then
(

if checkrec: addR then
(

if aaR = AAFLAG then
event evPoison(At, GetSrc(addR), GetDst(addR), v3,

GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID9)
else

event evPoison(At, GetSrc(addR), GetDst(addR), v2,
GetSrc(cachedNSrecordR), GetSrc(cachedArecordR), GetSrc(cachedCNAMErecordR), ERRORID9)

)
)
else event cachingGLUEfail(addR)

)
else
(

event cachingGLUEfail(addR)
)

)
)

).

process
processCC

