The Hitchhiker’s Guide to DNS Cache Poisoning

Sooel Son and Vitaly Shmatikov

The University of Texas at Austin

Abstract. DNS cache poisoning is a serious threat to today’s Intekfvetde-
velop a formal model of the semantics of DNS caches, inclydie bailiwick
rule and trust-level logic, and use it to systematicallyestigate different types
of cache poisoning and to generate templates for attacloadyl \We explain the
impact of the attacks on DNS resolvers such as BIND, Maral#¥8,Unbound
and their implications for several defenses against DN&&goisoning.

Key words: DNS, cache poisoning, formal model

1 Introduction

The Domain Name System (DNS) is an essential part of thernateihe primary
purpose of DNS is to resolve symbolic domain names to IP addsd10,17,18]. Many
Internet security mechanisms, including host access aloantid defenses against spam
and phishing, implicitly or explicitly depend on the intégrof the DNS infrastructure.
Unfortunately, security was not one of the design constitara for DNS, and many
attacks on DNS were reported over the years [3,12,15,19].

Cache poisoning is arguably the most prominent and dangerous attack on DNS.
DNS cache poisoning results in a DNS resolver storimg, caching) invalid or ma-
licious mappings between symbolic names and IP addressesauBe the process of
resolving a name depends on authoritative servers locdsed/lgere on the Internet
(see Section 2.2), DNS protocol is intrinsically vulneetd cache poisoning [3]. An
attacker may poison the cache by compromising an authieet@NS server or by forg-
ing a response to a recursive DNS query sent by a resolverdathoritative server.

Many non-cryptographic defenses (surveyed in Section@)dcolely on blind re-
sponse forgery and attempt to solve the problem by incrgasia entropy of DNS
query components such as transaction IDs, query labelg@hdumbers. This makes
blind response forgery more difficult. Unfortunately, ldiresponse forgery is just one
of the possible attack vectors for DNS cache poisoning amlikeicryptographic solu-
tions, these defenses are vulnerable to trivial eavesdrg@tacks. Therefore, they do
not address the root causes of DNS cache poisoning and prorid partial protection.

Our goal is to develop a formal model for the semantics of Did&hes and use
it to study cache poisoning attacks. Our analysis focusah®mternal operation of
DNS resolvers and is thus complementary to the analyseswbrieprotocols used to
deliver DNS messages, success rate of forgery attempteorietevel defenses, and so
forth. For instance, in a concurrent work [4], Bau and Mittf@mally modeled the
cryptographic operations involved in the DNSSEC protodisicovering a vulnerability
that allows an attacker to add a forged name into a signed zone

2 Sooel Son and Vitaly Shmatikov

By contrast, we analyze the internal bailiwick rules (usgdINS resolvers to de-
cide whether to accept a mapping from a given authority) aednust levels of DNS
data (used by resolvers to decide whether to overwrite astiegirecord). The baili-
wick rule in particular, while critical for DNS security amdliability, is not part of the
DNS standard and left to the resolver implementation. Ikglsties are often exploited
by cache poisoning attacks, regardless of the actual merhdsuch as blind response
forgery) used to deliver attack packets. To the best of oankedge, internal operations
of DNS resolvers have not been formally modeled before.

Our contributions. We explain the nature of DNS cache poisoning attacks aneéptes
a precise, formal model of the bailiwick rule and the recovedrarriting mechanism
of modern DNS resolvers, including BIND v9.4.1, Unbound3/4, and MaraDNS
v1.3.07.09. We use our model to systematically enumeratenalyze different types
of cache poisoning attacks and to explain the damage taefiff@spects of DNS res-
olution resulting from each attack. Using the ProVerif paatl analysis tool [6], we
automatically construct attack templates for all attacksur taxonomy, verifying that
the attacks work against actual implementations.

The objective of this study is to develop a precise undedstanof the semantics
of modern DNS caches, including their bailiwick rules andtrlevel logic. We daot
propose a new defense against DNS response forgery sineeditef against specific
types of DNS compromise is largely orthogonal to our godtsgéneral, the only reli-
able protection is provided by cryptographic authentaraichemes such as DNSSEC;
unfortunately, these schemes are not yet deployed widektg¢ad, we use our model
to enumerate the consequences of different types of DN®Mpmexploits, regardless
of whether they are perpetrated via server compromisédat attack, eavesdropping,
or some other attack vector. We also show that our model ifslufee evaluating the
effectiveness of some non-cryptographic defenses agaMStresponse forgery.

2 DNS Background

2.1 Resourcerecord set

DNS is a distributed storage system for Resource Record}. (B®®h DNS resolver
or authoritative server stores RRs in its cache or local fid@eA Resource Record
includes a label, class, type, and data [10]. The label of RrisRa symbolic domain
name used when accessing an Internet resource [17]. Treigleisher IN, or CH; the
class of most RRs is IN, which means the Internet system. yffne ¢an have many
possible values, but we will focus on records of type A, CNAMEd NS. An A record
holds a mapping from a domain name to an IP address, a CNAM&ddwlds a
mapping from a domain name to an alias, and an NS record hatiepping from a
domain name to the name of an authoritative name serverdodtimain. Each record
has a time-to-live (TTL) parameter and is purged from théneamnce its TTL expires.

No two RRs in the cache may have the same label, class, tydedaa, but it is
possible to have multiple records with the same label, ckasd type. Such a group is
called a Resource Record Set (RRset).

The Hitchhiker's Guide to DNS Cache Poisoning 3
2.2 Caching and recursiveresolution

When a DNS resolver or authoritative server receives a qiesgarches its cache for a
matching label. If there is no matching label in the cachesdrver may instead retrieve
from the cache and return a referral response, containirigReet of NS type whose
label is “closer” to the domain which is the subject of theryé 7].

Instead of sending a referral response, the DNS resolveratsaybe configured
to initiate the same query to an authoritative DNS servepansible for the domain
name which is the subject of the query [17]. Each query istifled by a random 16-bit
transaction ID (TXID). The authoritative server can regpaith an answer, a referral,
or a failed response. In general, a response is comprisée gitery, answer, authority,
and additional sections. Each section may have none, omaultiple RRsets.

The authoritative server's response—or a forged messagenuling to be the au-
thoritative server’s response—is accepted by the DNSvesaind stored in its cache
only if the RRset of each section passes a set of conditioowikias thebailiwick rule.
These conditions are not part of the DNS specification anémigpn the implementa-
tion of the resolver. Furthermore, in certain circumstasee Section 5), the received
records may eveaverwrite those already stored in the cache.

Poisoning the DNS cache by adding false records is a serfoeatt but DNS
records corresponding to popular domains are likely to beadly stored in the cache
prior to an attack and are thus not vulnerable to the basgefgrexploit (this ob-
servation underlies the naive defense of increasing the-tovlive parameter of these
records). Itis the ability to overwrite existing recordatimakes DNS response forgery
such a devastating attack. To understand record overgyitia need to understand (1)
the mechanism through which an attacker may introduce tbrgeords into the cache
of a DNS resolver (Section 3) and (2) the bailiwick and tdasel rules that govern
addition and overwriting of records in DNS caches (Sectibagad 5).

3 DNS Response Forgery

3.1 Cache poisoning without response forgery

Before BIND adopted the bailiwick rule in 1993, the owner aff@NS authoritative
server could compromise records corresponding to any domane [22, 23]. When
responding to a query from the resolver, a malicious auttre server can send, in
the additional section of its response, an arbitrary mapfiiom any domain name
(including those outside its authority) to an IP address.

For instance, consider a malicious authoritative servebb&al. com When a client
asks its DNS resolver to resolvewv. bad. com the resolver queries the server. The
server's response contains in its additional section thagping from, sayns1. good.
comto a malicious IP address. Without the bailiwick rule (désed in Section 4), this
mapping would have been cached by the resolver, even thpoigt. comwas neither
part of the query, nor under the malicious server’s auth@siee Fig. 2(a)).

4 Sooel Son and Vitaly Shmatikov
3.2 Blind response forgery using birthday attack

The basic DNS protocol does not authenticate responsesucsiee queries. The only
checks are: (1) the query section and 16-bit transactionTIKI@) of the response
must match those of the query, and (2) the source IP addrelsdestination port of
the response must match, respectively, the destinatioddReas and source port of the
query. The first arriving UDP packet which satisfies thesalitams is treated as a valid
response from the authoritative server.

Prior to recent patches [8], many DNS resolvers used a fixetdkpasend queries.
Therefore, with the exception of a random TXID, all valuesdiby the resolver to
determine the validity of a packet received in responsestquiery are predictable. To
generate a valid-looking response, it is sufficient to gties3 XID used in the query.

Attacks on DNS exploiting the |[query section:
“pirthday paradox” have been known |} g°ge.com I A

Answer Section:

since at least 2002 [21]. If the TXID |ymw.gogecon INA 1224
has onlyN bits of entropy (in prac- |-google.com N NS ns2.google.com Y

Authoritative Server

. -.google.com IN NS ns1.google.com
tice, N = 16), a network attacker |additional section

nsl.google.com IN A 1.2.3.5

N .
needs onlyO(2z2) trials on average |n. gsogle.comin a1 246

to generate a forged response whick M B
matches the TXID of the query and Resolver % o S Fole
will thus be accepted as valid by the ///‘

target resolver. The answer section

‘Query Section

of the forgery contains a maliciougww.google.com N A

mapping from a domain name to an

IP address (see Fig. 1). 7
For the attack to succeed, the &

forgery must arrive to the target re-

solver before the response from the

legitimate authoritative server. If the

legitimate response arrives first, it

will be cached by the resolver and until its time-to-live (IjTexpires, the resolver

will not ask the authoritative server to resolve the sameabomame, preventing the

attacker from poisoning the mapping for that domain.

Query Section
www.google.com IN A

Answer Section :

www.google.com IN A 6.6.6.6
Authority Section:

.google.com IN NS ns2.google.com
.google.com IN NS nsl.google.com
Additional Section

nsl.google.com IN A 1.2.3.5
ns2.google.com IN A 1.2.4.6

User

Fig. 1. Overview of the cache poisoning attack

Query Section : www.bad.com IN A Query Section : xyx12.gocgle.com IN A
Answer Section : www.bad.com IN A 6.6.6.6 Answer Section :

Authority Section: NONE

.bad.com IN NS nsl.yahoo.com Authority Section:

.bad.com IN NS nsl.google.com .google.com IN NS www.google.com
Additional Section Additional Section

nsl.yahoo.com IN A 6.6.6.6 www.google.com IN A 6.6.6.6
ns1.google.com IN A 6.6.6.6

(a) A forged response without considering (b) Kaminsky’s exploit
bailiwick

Fig. 2. Payloads of various cache poisoning attacks

The Hitchhiker's Guide to DNS Cache Poisoning 5

Kaminsky’s exploit. At Black Hat 2008, Kaminsky presented a new extension of the
birthday attack [13]. While the basic mechanism is the samsing the birthday attack
to forge a response with the same transaction ID as the qulerg® observations make
Kaminsky’s attack more serious than “conventional” DN Syfy [19].

First, the attacker can force the target resolver to imtatjuery to an authoritative
server of his choice. Second, modern attackers have en@atgbrk bandwidth to gen-
erate a large number of spoofed responses, each with aatiffguess of the transaction
ID. Third, the malicious “payload” of the forged respons¢tis additional section (as
opposed to the answer section in the conventional attamkjefisons explained below.

The basic scheme of the exploit is as follows. The attackepsés the domain
name that he wants to compromiseg(, ww. googl e. con). He then queries the
target resolver with any subdomain which is not already edain the resolver(g., a
non-existent subdomain suchxagz12. googl e. conj. Because the name is not in
the cache, this causes the target resolver to send a quédrg tuthoritative server(s)
for this domain. At this point, the attacker floods the resohwith a large number of
forged responses, each containing a different guess ofubig/’'g transaction ID.

A typical forged response is shown in Fig. 2(b). Note thasiareferral, not an
answer, and the false information is contained in the amftfii section rather than the
answer section. This greatly increases the efficacy of ttaelatinstead of hijacking
a mapping for a single domain name, the attack, if succegstubduces into the tar-
get resolver’s cache a false mapping for an authoritativeeseFuture queries from
the compromised resolver will be sent directly to an attackatrolled IP address, en-
abling the attacker to provide malicious responses withbtot response forgery.

If a forgery attempt fails, the attacker can immediatelytstanew race, using a
different domain name, and continue until he actually wiresracej.e., a forgery with
a valid transaction ID arrives to the resolver before théilegte answer.

3.3 Response forgery using eavesdropping

A number of recently proposed defenses against DNS cactsoniog, including
source port randomization, 0x20-bit encoding, XQID, andBEZEDNS, fundamentally
depend on thesymmetric accessibility of the components used for authenticating re-
sponses to DNS queries [7, 8,11, 20].

These defenses ensure neither confidentiality of DNS cgjer@ authentication of
responses (in contrast to cryptographic defenses such &SBWN) and thus prevent
only blind forgery. DNS remains vulnerable to trivial attacks by coomised servers
and/or network eavesdroppers: in a non-switched subn@bament, the attacker can
run an eavesdropping tool in the promiscuous mode; in a badtenvironment, ARP
poisoning [14] or any similar technique can be used to foliqgagkets from the target
resolver to pass through a malicious computer on the sameesub

4 The Bailiwick Rule

The purpose of the bailiwick rule is to prevent malicioushawitative servers from pro-
viding DNS mappings for domains outside their authority ag pf a referral response

6 Sooel Son and Vitaly Shmatikov

(see Section 3.1). For example, the authoritative serverdomcan return a mapping
for any. comdomain, while the authoritative server foad. comshould only be able
to provide mappings for subdomainskedd. com

The RFC specifying the DNS protocol does not define a contraitavick rule.
For the purposes of this paper, we analyze the bailiwicksrafehree open-source im-
plementations: BIND v9.4.1 [1], Unbound v1.3.4 [16], andrislaNS v1.3.07.09 [24].

BIND. The complete bailiwick-checking algorithm of BIND v9.4d.shown in Fig. 5
in the appendix. The key data structure used to keep tradiedfailiwick at any given
point in the recursive DNS resolution @uery. zone. If a BIND resolver cannot
resolve a query locally, it finds the RRset whose label is ttiesest” to the received
guery among all RRsets of type NS in its cache. This labebisedtinQuer y. zone,
and the resolver sends the query to the name server indiogtibe NS record.

If the response holds an RRset in the answer section, théveesaches it after
checking that its domain label matches the query. NS redarttee authority section
are cached only if their domain label is a subdomain of or Eigu@uery. zone.

If the response is a referral.€, the answer section does not contain a record),
the resolver must resend the query to another name seniadieated in the referral.
At this point, the bailiwick check is performed. First, thesolver checks whether the
domain label of the query is a subdomain of the label in théanity section of the
received response. If it is, the resolver next checks whetiee domain label in the
authority section is a subdomain of the current valu€Qoéry. zone. Only if both
conditions hold, the resolver caches the NS-type RRseivexte the referral.

The next step is to determine whether to cache the RRsets atfttitional section of
the referral. If the domain label of each record in the addai section is a subdomain
of Query. zone, the additional section is cached; otherwise, it is not eddmnd the
resolver will initiate new queries for the labels of the retsfrom the additional section.

This prevents a malicious name server from referring a gteeayname server in a
different bailiwick along with a false IP address mappingtfat server (as in Fig. 2(a)),
since the resolver will not cache the additional sectiontaioing the false mapping.

Finally, the value ofQuery. zone is changed to the label of the RRset in the
authority section of the received referral response. THeBtesolver then initiates
queries for the names which were not cached in the previeps st

Unbound. The bailiwick checking algorithm of Unbound (Fig. 6 in thepgmdix) is
very different from BIND. All records whose labels are outloé bailiwick are removed
from the received responses. The remaining records aredaplovided the response
contains at least one answer record which comes from an réitatie server.

Unbound also differs in how it decides whether a responseréearal or not. If
the label of the authority record in a response is below telver’s bailiwick zone,
Unbound labels the response as a referral even if there adre the answer section.
The resolver caches all records from the additional andoaitytsections of a referral
response, but, by default, does not send them to clients [26]

MaraDNS. The bailiwick logic of MaraDNS (Fig. 6 in the appendix) is sificantly
simpler. MaraDNS does not cache the authority and additsewion of responses con-
taining an RRset in the answer sections, thus eliminatiagnéed to perform bailiwick

The Hitchhiker's Guide to DNS Cache Poisoning 7

checks on them. Furthermore, even for referral responsass NS caches neither the
NS mapping from the domain name to an authoritative servaen(@uthority section),
nor the A mapping from the latter name to an IP address (additisection). Instead,
MaraDNS simply stores an authority section with a mappiogithe domain name to
the IP address. This eliminates the need to perform a bakishieck on the name of the
authoritative server, since this name is not cached (withtargial loss in efficiency).

Differences between resolver implementations. Table 1 summarizes the differences
between DNS resolver implementations. There is an impbdéference between
BIND’s and Unbound’s default caching policies for RRsetgha additional section.
To shorten query resolution times, BIND caches all such rmgspincluding domain
labels and IP addresses from the additional section. Byuttefanbound, too, caches
the additional section, but these mappings are not senetoliggnt as the answer for a
query. Therefore, from the client’s viewpoint, the defdaghavior of Unbound is sim-
ilar to that of MaraDNS. All three implementations can be poomised by different
types of cache poisoning attacks (the implementationseamastically correct, but the
protocols they use for updating the DNS cache are intriligieaeak). In Section 7, we
show which implementation is vulnerable to which attack.

Functionality BIND 9.4.1/Unbound 1.3.MaraDNS 1.3.0Y

RRset trust rules (@]

Caching answer section (@)

Caching authority section from a referral response O

Caching authority section from an answer response O

Caching additional section from a referral response O

O|O|0|0| 0|0

Caching additional section from an answer response O

X|X| X[X|O|O| X

Additional section data sent to clients Default O| Default X

Table 1. Differences between resolver implementations.

Kaminsky’sexploit and the bailiwick check. Kaminsky’s exploit does not violate the
bailiwick rule. The forged referral in this attack contais authority section with a
(possibly fake)n-bailiwick name server, along with an additional section mapping this
server to an attacker-controlled IP address. This invalgpng is cached by the target
BIND resolver. If the attacker wants to compromise the magif an existing name
server (as opposed to introducing a fake one), there is alamatipn. The mappings
for the name servers of popular domains tend to have long [Tthkey are likely to be
already present in the victim’s cache and must be ovenmritteSection 5, we explain
the conditions under which an existing record may be ovétevri

Unbound caches RRsets from the additional section, butebautt, does not send
them to clients. These RRsets are used internally by thévergo find IP addresses of
authoritative servers and can be overwritten, facilitertain attacks (see Section 7).

MaraDNS will accept the malicious authority section, bt thapping from the fake
name server to an attacker-controlled IP address will naidoded. The IP address of
an authoritative server can be changed only by overwritingxasting mapping.

8 Sooel Son and Vitaly Shmatikov

5 Cache Overwriting

Cache poisoning attacks are especially dangerous bedaiseriable the attacker not
just to add false mappings to the cache of vulnerable DNSves) but also taver-
write existing mappings, including long-lived mappings for ptapulomains.

The rules for overwriting cache records are defined in RFQ218]. They depend
on thetrust level of an RRset. Table 2 shows trust levels used by BIND resalvérs
trust level of an RRset contained in a response depends othertiecomes from an
authoritative server and whether the response is a ref@mnadt level 8 is for records
in a local zone setup file provided by a DNS server administrathile trust level 7 is
used by DNSSEC. We focus on records whose trust levels areZrm 6.

Define symbol | Trust leve Description
dnstrustultimate 8 This server is authoritative
dnstrustsecure 7 Successfully DNSSEC validated
dnstrustauthanswer 6 Answer from an authoritative server
dnstrustauthauthority 5 Received in the auth section as an authority response
dnstrustanswer 4 Answer from a non-authoritative server
dnstrustglue 3 Received in a referral response
dnstrustadditional 2 Received in the add section of a response

Table 2. Trust levels in BIND 9.4.1.

BIND and Unbound. In BIND, a cached RRset is overwritten if the trust level of
the received RRset is higher or equal to the cached one amdllités longer. NS-type
RRsets received in a referral are an exception: they haveustdevel 8 for the purposes
of overwriting (.e., they always overwrite the records already present in thhejabut
are stored with the trust level 3.

In Unbound, the absolute trust levels are different, butéfetive order is the same.
Therefore, we use the same trust-level model for BIND andduini.

MaraDNS. MaraDNS does not use trust levels. A new record containdteimgsponse
simply overwrites the existing record. In practice, howewaly NS records can be
overwritten by forged responses. Because MaraDNS doesaobedhe additional sec-
tion of responses, in order to overwrite an A or CNAME recdrd forged response
should contain the replacement mapping in the answer seatid its label must be
exactly the same as the label of the record to be overwriaoh a forgery would only
be accepted in response to a query with the same label. Ghsmwever, that since a
record with this label is already present in the cache, a D& resolver would never
initiate a recursive query for this label. Therefore, thieneo query that would give the
attacker an opportunity to overwrite an existing A or CNAME€ord.

The Hitchhiker's Guide to DNS Cache Poisoning 9

RESOLVER
El CACHE
M E I
The labels of| - @ cached
[__records to b With TL_A initially!
e
Q| [T
= | Crrmeue Response is
LLd E cached !
- < mecursive -mﬂﬂ Bailiwick rule conditions
mz} . ponse is
m H — not cached!
) S

Fig. 3. Generic model of a DNS resolver

6 Formal Model of DNS Resolver

6.1 Modeling methodology

As shown in Sections 4 and 5, the semantics of DNS caches &re aumplicated.
To understand the potential impact of cache poisoning ldtage construct a formal
model of the default bailiwick-checking and cache-ovetiwg rules of BIND v9.4.1
and Unbound v1.3.4. We do not build a formal model for MaraDié8ause it does not
cache the authority and additional sections of respong#aiting an answer RRset and
does not use trust levels for overwriting existing recokfs. do show attacks against
all three implementations, including MaraDNS, in Table 4

We use the ProVerif protocol analysis tool, due to its susaepractical formal ver-
ification of security protocolsg., [2]). The details of ProVerif are beyond the scope of
this paper and can be found in [6]. The behavior of each pobfmarticipant is modeled
as a set of Horn clauses, which represent sending or regainé@ssages on specified
communication channels. ProVerif then uses a sound, résolbased algorithm to de-
termine whether a specified property holds over all exenstas the protocol.

Fig. 3 shows the abstract model of DNS resolver. We use it gzkchvhether or
not a cached resource record with a certain label and trustilesecure against cache
poisoning conducted by the active adversary who has comptettrol of the network.
This attacker model may appear strong, but we emphasizeagaie that our goal is to
model theinternal behavior of DNS resolvers, not the details of the network protocol
through which DNS messages are exchanged. By modeling thereas a public
channel, we can focus on the semantics of the cache and tlfstra the particulars
of the forgery method through which attacker packets aredhitced.

The initial state of the model asserts that three valid @saf types A, NS, and
CNAME, respectively, have been cached. Their labels areraéted via network in-
puts. (In reality, the attacker can insert an arbitrary lahi® the cache by tricking a
client of the resolver into asking to resolve the corresfprmgpdame.) Trust levels are
specified manually. The model then receives a query froméheark. If recursive res-
olution is required, the model sends out a recursive quetlyegeives a response from
the network. The bailiwick rule in the model determines whiecords in the response

10 Sooel Son and Vitaly Shmatikov

should be cached. If a malicious record satisfies the bakiwbnditions, the model
asserts that a cache poisoning event has occurred.

6.2 Base datatypes

We use a simplified model of DNS records with only three congpds—type (A,
NS, or CNAME), domain name, and data—and ignore other aspenth as author-
ity RRsets in the answer section, lame resolution, and zefegdtion. Events model
critical points in the resolution process. TaénitCache event occurs when the model
is initialized. It asserts that a record is cached with afierspecified trust level prior to
the attack (in our analysis, we vary the trust level to deteerwhether or not a particu-
lar record can be overwritten). TleeRecursiveQueryStart event occurs when the cache
does not have a record matching a given query and the resolv&rsend a recursive
query to an authoritative server responsible for the baikvzone. TheavPoison event
occurs when an invalid record passes all checks and is abbettached.

6.3 Cacheinitialization

Our model assumes that the CNAME, A and NS resource records ¢ertain name
are already present in the cache. The model then generatesya waits for a response
from the network, and decides whether or not the responsddhe cached.

The following property says that thevPoison event does not occur unless the
evinitCache event has occurred. More precisely, in the resolver whiokaaly caches
cachedns, cacheda andcachedcnamelabels, a resource record whose labgldssoned-
label and whose type isectype is cached with the trust levedll only if there has oc-
curred arevinitCache event in which the resource record whose label vazbedlabel
and whose type wasachedtype was cached with the trust levedchedtl.

query ev: evPoison(rectype, poisonedlabel, poisonedtiata
cachedns, cacheda, cachedcname)
— ev: evlnitCache(Record(cachedtype, cachedlabel, dagehedtl)

6.4 Non-overwritability

Recall from Section 5 that a cached record can only be oviteniby a record with an
equal or higher trust level. The following properties mothen-overwritability” of A
records with various trust levels:

query ev: evPoison(At, cacheda, wrongdst, tl, cachedeherta, cachedcname)
— ev: evinitCache(Record(At, cacheda, validdst), t6t)6 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachediebetta, cachedcname)
— ev: evinitCache(Record(At, cacheda, validdst), tht}4 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachedieherta, cachedcname)
— ev: evinitCache(Record(At, cacheda, validdst), t8t)3 > tl

query ev: evPoison(At, cacheda, wrongdst, tl, cachediechetta, cachedcname)
— ev: evinitCache(Record(At, cacheda, validdst), ti2t)2 > tl

The Hitchhiker's Guide to DNS Cache Poisoning

11

Question Question Question Question

anyl.abc.com, ? anyl.abc.com, ? anyl.abc.com, ? anyl.sub.abc.com. ?

Answer Answer Answer Answer

NULL anyl.abc.com A 1.2.3.4 NULL NULL

Authority Authority Authority Authority

sub.abc.com. NS www.abc.com |abc.com. NS www.abc.com abc.com. NS www.abc.com sub.abc.com. NS www.abc.com
Additional Additional Additional Additional

www.abc.com A 6.6.6.6 www.abc.com A 6.6.6.6 www.abc.com A 6.6.6.6 www.abc.com A 6.6.6.6

sub.abe.com is a sub domain

name under abc.com
excluding abc.com itself.
Payload 1

abc.com is a sub domain
name under abc.com
including abe.com itself.
Payload 2

abe.com is a sub domain
name under abc.com
including abe.com itself.
Payload 3

* AA bit means that a reponse comes from an authoritative server.

Trust Level 5
abc.com NS nsl.abc.com

Payload 2 with
AA bit

Can be
Sverwritien E;

Trust Level 3
abc.com NS nsi.abc.com

Payload 2 with
AA bit

Can be
Gverwrien Si;

Trust Level 2
abc.com NS nsi.abc.com

Can be

lﬁ) Payload 2

Trust Level 3
www.abc.com A 1.2.3.4

Can be ;
Fverwmen . Payload |

Trust Level 2
www.abc.com A 1.2.3.4

Payload 1,

Can be
Sverwriten E?

Payload 2

BIND 9.4.1

abec.com is a sub domain
name under abe,com
including abe.com itself.

Trust Level 5
abc.com NS nsi.abc.com

Trust Level 2
abc.com NS nsl.abc.com

Trust Level 3
www.abc.com A 1,2.3.4

Trust Level 2
www.abc.com A 1,.2.3.4

Payload 4
Can be Ppﬂ}-‘}oz‘id 2,
sy Pavioad 3
with AAbit
Can be Payload 2,
Fvewiten b7 Payload 3
Payload 2,
_034%:) Payload 3,
overwriten Payload 4
with AAbit
Payload 2,
ove?s:: l:: Payload 3,
Payload 4

Unbound 1.3.2

Fig. 4. All ways to overwrite an existing RRset in the cache.

Each of these properties says that whenever a poisonind eveuors, the target

record is already cached with a certain trust level whichiggér than the trust level
of the forged response. If the property holds, the existéoprd cannot be overwritten.
If the property cannot be provable, then the model contditeaat one path in which
the trust level of the forged record is higher than the trasel of the cached record.
Therefore, the cached record can be successfully oveswtity the forgery.

ProVerif analysis shows that in both BIND and Unbound, neararritability holds
only for trust levels 4 and 6. All cached records whose trexgllis 2, or 3can be over-
written. For all interesting trust levels of an A or NS recdrdy. 4 shows the (automat-
ically generated) templates for malicious payloads to leelurs the forged response. In
Fig. 4, we assume that the NS recordhbfc. comand the A record ofww. abc. com
are already cached by the victim resolver.

The following property is always false in our model, showihgt CNAME records
cannot be overwritten.

query ev: evPoison(CNAMEt, cachedc, invalid, tl, cachedasheda, cachedc)

12 Sooel Son and Vitaly Shmatikov
6.5 Bailiwick rule

The primary purpose of the bailiwick rule is to prevent anhauitative server from
claiming the mappings from domain names belonging to othéaaities. To determine
whether the bailiwick-checking logic of BIND and Unboundoévers achieves this, we
used ProVerif to verify the following three properties:

query ev: evPoison(NSt/At/CNAMEt, targetname, dst, tEheadns, cacheda, cachedc)
— ev: evRecursiveQueryStart(query, bailiwick, bailiwickéerver)
A isSubName: query, bailiwick
A isSubName: targetname, bailiwick

These properties say that a record can enter the cacheqgeped by the cache
poisoning event, since in our model all responses arrivm ftloe network attacker)
only in response to a recursive query anthifgetname andquery are subdomains of
bailiwick. Herebailiwick is the authority name closest to the domain label in the query

According to ProVerif, these three properties hold in oudedoTherefore, the do-
main name of both legitimate and forged responses must bedssain of the proper
bailiwick, as determined by the DNS resolver. Note, howgthat the bailiwick de-
pends on the label of the current query. An attacker mayateita query for a domain
of his choice or manipulate the resolver into issuing sucherye.g., by tricking one
of the resolver’s users into visiting a webpage with a linkhe domain), thus ensuring
that forged responses do not violate the bailiwick rule.

7 Taxonomy of Cache Poisoning Attacks

We use our model to systematically enumerate several typeaohe poisoning at-
tacks, the corresponding payloads of forged DNS respomasestheir effect on the
compromised resolver. Our taxonomy is shown in Table 3. tbisplete for A, NS,
and CNAME records. We assume that the resolver has alreasty/tfire bailiwick zone
(abc.com) for incoming responses. Every name which can bmattof cache poison-
ing belongs to one of three categories: domain outside aiw; subdomain of abc.com,
or abc.com itself. There are two types of cache poisonindjingda new name and over-
writing the mapping for an existing name. Table 3 covers adigibilities.

Table 4 summarizes the feasibility of different types of mpoisoning attacks
against different resolver implementations. Because BEXD Unbound use different
caching policies by default and MaraDNS does not cache tl@iadal section, the
effective attack payload varies from resolver to resoler. BIND and Unbound, our
analysis is based on our formal model and experimentallkattagainst the resolver
implementation. For MaraDNS, we analyzed the bailiwicleaking logic manually (it
is significantly simpler than in either BIND, or Unbound).

7.1 Adding anew CNAME record

Our model shows that the only way to add a malicious CNAME nrapto the cache
is to forge an answer section whose label is exactly sameeaguéry (the reason is

The Hitchhiker's Guide to DNS Cache Poisoning 13

Target domain name Type Type of poisoning —
. . Overwriting an existing
Adding a new mapping .
mapping
CNAME
Domain name outside abc.com A Impossible (Section 6.5)Impossible (Section 6.5
NS
abc.com NS Target name is already Bossible (Section 7.4)
the cache
CNAME |Possible (Section 7.1) |Impossible (Section 6.4
Subdomain of abc.com A Possible (Sections 7 |Bossible for trust levels P,
7.2,7.5,7.6) 3 (Sections 7.3, 6.4)
NS |Possible (Section 7.4) |Possible (Section 7.4)

Table 3. Taxonomy of cache poisoning attacks on BIND and Unbound.¢abt is the bailiwick
zone).

Type of attack BIND 9.4.1 Unbound 1.3.4 | MaraDNS 1.3.07
Adding a new CNAME recor|
(Section 7.1)

dEffective Effective Effective

Possible, but ine

itective fective with the de Impossible by forg-

Adding a subdomain under |
ing additional data

existing authority (Section 7.2

fault policy
Overwriting an existing A .] -
record (Section 7.3) Effective Effective Impossible
Overwriting an existing Ntffective Effective Effective

record (Section 7.4)

Effective (requiregEffective (requires
prior overwriting offprior overwriting of
1P addresses of allP addresses of al
thoritative servers)|thoritative servers)

Creating fake domains (SecI:E-ﬁeCtNe..(by forgy
i ng additional seq
tion 7.5)

tion)

Stealing a popular domain name
by hijacking subauthoritie&ffective Effective Effective
(Section 7.6)
* IP addresses of authoritative servers can be overwrittdrout overwriting an A record.

Table 4. Cache poisoning attacks on different resolvers. All attalclve been tested against
actual implementations.

that the authority section contains only NS records and tlitianal section only A
records). This is captured by the following property:

guery ev: evPoison(CNAMEt, newname, invalidlabel, tl,loaans, cacheda, cachedc)
— ev: evinitCache(Record(At, cacheda, validlabel), catihed

The disadvantage of this attack is that it cannot be easilygteated via blind, brute-
force forgery. If the attacker fails in a single race, thehesr will cache the failed label
and the attacker must change the target name. If, howeeeattacker poisons the IP
addresses of authoritative servers for a certain zone, hieat® all names in this zone

14 Sooel Son and Vitaly Shmatikov

and adding any CNAME mapping is trivial. The IP addressesutli@itative servers
are usually cached with the trust level 2 or 3 and can thus beagitten (Section 7.3).

7.2 Adding a subdomain under an existing authority

This exploit adds a record for a fake subdomain under aniegiauthority in the vic-
tim’s cache. It is modeled by the following property:

query ev: evPoison(At, makeSubName(bad, goodZone),ithvhl
goodZone, makeSubName(good, goodZone), cname)
— ev: evinitCache(Record(At, makeSubName(good, goodZovedi}l), cachetl)

As shown in Fig. 4, payloads 1 and 2 can add a new domain namgltdzcache.
By default, the RRsets in the additional section will be uaethe answer to the query.
Payloads 2, 3, and 4 can add a new domain name to an Unboure] batitunbound’s
default policy does not send this information to clients.

This attack is dangerous to clients using BIND resolversbee many Web security
policies are vulnerable to attacks from subdomains. Famgk@, many websites set the
path and domain name of cookies as, respectively, /" antbipéwvo levels of the site’s
domain €.g., exanpl e. comrather thanmw10. exanpl e. con. An attacker who
uses cache poisoning to introduce a fake subdomain can istemqito lure naive users
to this subdomain and then overwrite and/or read cookidssegitimate subdomains.

7.3 Overwriting an existing A record

One may assume that address mappings for popular domairsraamelready cached
by most resolvers with the trust level 4 or 6. Therefore, ttaynot be overwritten until
their TTL expires. This is the basis of a common defense atjBINS forgery: simply
increase TTL for legitimate DNS records.

A cleverer attack exploits the fact that it is uncommon féermds to directly initiate
queries about authoritative name servers suchsdls googl e. com Records with
addresses of authoritative name servers are typicallyvextdy resolvers as part of
referral responses, which are cached with the trust level ®herefore, they can be
overwritten. In our model, this is captured by the followimmperty:

query ev: evPoison(At, targetname, invaliddata, tl, nggmame, cname)
— ev: evinitCache(Record(At, targetname, validdata), 2R > tl

query ev: evPoison(At, targetname, invaliddata, tl, nggmame, cname)
— ev: evinitCache(Record(At, targetname, validdata), 33 > tl

Our formal analysis shows that payloads 1 and 2 for BIND andigaals 2, 3, and
4 for Unbound (see Fig. 4) can accomplish this attack.

This attack is dangerous to clients of both BIND and Unbolirrdsults in changing
the IP addresses of authoritative servers and enablestdekert to compromisany
domain in the server’s zone. Furthermore, IP address mgpar the names of root
DNS servers such a&. ROOT- SERVERS. NET can be stored in the cache with the
trust level 2. Although there are only 13 root servers, mgKorgery harder, if the
attack does succeed, their addresses can be overwritten.

The Hitchhiker's Guide to DNS Cache Poisoning 15
7.4 Overwriting an existing NSrecord

Unlike Kaminsky’s attack, which uses the authority and tiddal sections of the forged
response to compromise the mapping from a domain name to addfess, forged
responses can also be used to overwrite existing NS recotis resolver’s cache [25].
In our formal model, this is represented by the followingpey:

query ev: evPoison(NSt, targetname, invalidlabel, ty¢éamame, a, cname)
— ev: evinitCache(Record(NSt, targetname, validlabelghed) A cachetl> tl

Payload 2 from Fig. 4 works against BIND, payloads 2 and 3resjainbound.

The consequence of this attack is that any query for a donsairerunder the com-
promised authority is sent by the resolver directly to aackier-controlled authoritative
server(s). This exploit is more serious than Kaminsky'sleixfpecause it effectively
hijacksevery domain name under the compromised authority. We emphdsitdhe
attacker can overwrite any NS record in the cache, even thitkeon-expired TTL.

7.5 Creating fake domains

Cache poisoning enables the attacker to insert a mappiramfodomain name into the
victim resolver’s cache even if the domain does not exiseatity. For example, the
attacker can create mappings for plausible domain namésaswewv. googl e. edu
andwww. uni ver si ty. gov, making it easier to carry out phishing attacks. To stage
this exploit, the forged packet must look like a valid respofrom the authoritative
server for a top-level domain such asdu or. gov. Against BIND, it is sufficient to
forge RRsets in the additional section. Technically, thacktis modeled by the same
rules and uses the same payloads as in Section 7.2.

The attack against Unbound is more sophisticated becauseudd by default does
not send the additional section to clients. The attacket change the authority section
for the target zone or the IP addresses of the zone’s auliegitservers. Once that's
done, adding a new name under this zone is trivial. Techlgjchls attack is modeled
by the same rules and uses the same payloads as in Sectioasp8dtively, 7.4).

7.6 Hijacking a popular domain via a sub-authority

A common objective of DNS attacks is to compromise the maggfar popular domain
names such agww. paypal . comandwwv. googl e. com As mentioned above,
such mappings are difficult to compromise because theylkaely lio be already cached
with along TTL. In practice, popular domain names are ugualipped to subdomains
via long-lived CNAME records. For exampleyw. googl e. commay be mapped
towww. | . googl e. com Even if the attacker succeeds in forging an A record which
mapsmww. googl e. comto a malicious IP address, the resolver will use the unedpire
CNAME record rather than the forged A record, foiling theaakt

Subdomain names, however, are mapped to actual IP addisserecords with
relatively short TTL values. For example, the record magpwwv. | . googl e. com
to an IP address may have a 300-second TTL. Suppose theaatpaigons the authority

16 Sooel Son and Vitaly Shmatikov

section forl . googl e. com Once the A record fomw. | . googl e. comexpires,
the victim will ask an attacker-controlled server to ressmw. | . googl e. com giv-
ing him complete control over the mapping. This attack ieeiff/e against both BIND
and Unbound because it targets the authority section of a porthe IP address of
the zone’s authoritative server, not the records in thetewhdil section. Therefore, Un-
bound’s default policy does not prevent the attack. Tedillyicthis attack is modeled
by the same rules and uses the same payloads as in Sectioasp8dtively, 7.4).

8 Defenses

The objective of our formal model is to understand the naamekimpact of cache poi-
soning attacks at the level of DNS resolvarst the protocol through which poisoned
packets are delivered. By contrast, the defenses survesleds lfwith the exception
of cryptographic defenses) focus solely on preventingdolesponse forgery, which is
simply one of the many vectors for cache poisoning attackeréfore, they are largely
complementary and orthogonal to the goals of this paper.

Cryptographic solutions include DNSSEC [9] and DNSCunje [INSSEC uses
digital signatures to authenticate and protect integriityesponses to DNS queries. So
far, cryptographic solutions have not been widely deplayeelto their impact on DNS
performance, as well as political and infrastructural éssu

The most popular non-cryptographic defense against béispanse forgery is UDP
source port randomization [8]. It increases entropy of reige DNS queries by ran-
domizing the source port number in addition to the traneackD, thus making the
birthday attack more difficult. This patch depends on thdigonation of the local net-
work such as the firewall imposing strict constraints on umb connections. Other
solutions aiming to prevent blind response forgery by iasieg entropy of queries
are 0x20-bit encoding [7], which randomizes capitalizatid letters in the query (the
amount of entropy depends on the length of the query), and G@VBES [20] and
XQID [11], which use a challenge-response scheme with ramngionces.

While these solutions may be effective for blocking a paitidy dangerous attack
vector (namely, blind response forgery), they do not attuamlthenticate responses to
recursive DNS queries and should be viewed only as a temppadch until proper au-
thentication mechanisms are deployed. As long as thereatkisr attack vectors (see
Section 3) and modern resolver implementations such as BAINDUnbound cache
information provided in the authority and additional sewns of unauthenticated re-
sponses (see Section 4), DNS cache poisoning will remairi@sdssue.

Other proposed solutions include increasing TTLs of legptie records and limit-
ing the number of simultaneous recursive queries (therlaitdecrease the number of
simultaneous races that may be staged by the attacker). @delthelps evaluate such
defenses because their efficacy depends on a detailed tamténg of the semantics
of DNS caches. For example, our analysis shows that inergdsTL does not help
against a large class of attacks that involve overwritinga$ting DNS records.

The Hitchhiker's Guide to DNS Cache Poisoning 17

9 Conclusion

We presented a formal model of DNS cache semantics, ingjuiti@ bailiwick and
trust-level rules used by common resolver implementatiand analyzed it with the
ProVerif protocol analysis tool. The result is a comprehentaxonomy of cache poi-
soning attacks, showing (1) which parts of the cache can ®ped, (2) conditions
necessary for each attack, and (3) consequences of eack &tathermore, our anal-
ysis enabled us to produce payload templates for each awackrgue that our formal
model is an essential tool for understanding the subtleingatules used by modern
DNS resolvers and developing robust defenses against Dbl g@isoning.

References

1.

2.

o 01

10.

11.

12.

13.

14.

15.

16.

17.

18.

Internet Systems Consortium BIND 9.4.1. http://ww.isc.org/
downl oadt abl es.

M. Abadi and B. Blanchet. Computer-assisted verificatiba protocol for certified email.
ci. Comput. Program., 58(1-2):3-27, 2005.

. D. Atkins and R. Austein. Threat Analysis of the Domain MaBystem (DNS). RFC 3833

(Informational), August 2004.

. J. Bau and J. Mitchell. A security evaluation of DNSSECGWNISEC3. InNNDSS, 2010.
. D.J. Bernstein. DNSCurvét t p: / / DNSCur ve. or g.
. B. Blanchet. Automatic verification of correspondenaassecurity protocolsJ. Computer

Security, 2009.

. D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Leacreased DNS forgery resis-

tance through 0x20-bit encoding. GCS, 2008.

. C. R. Doughety. Vulnerability note vu#800113, 2008.t ps: / / www. kb. cert . or g/

vul s/ i d/800113.

. D. Eastlake. Domain Name System Security Extensions. B35 (Proposed Standard),

March 1999. Obsoleted by RFCs 4033, 4034, 4035, updated BsRB31, 3007, 3008,
3090, 3226, 3445, 3597, 3655, 3658, 3755, 3757, 3845.

R. Elz and R. Bush. Clarifications to the DNS SpecificatRiRC 2181 (Proposed Standard),
July 1997. Updated by RFCs 4035, 2535, 4343, 4033, 4034.

J. Hay. Anti DNS spoofing - extended query ID (XQID), Ap2iD08. htt p: // wwww.

j hsoft.com dns- xqi d. ht m

C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. €@tiotg browsers from DNS
rebinding attacks. I€CS, 2007.

D. Kaminsky. Black ops 2008-it’s the end of the cache akmesv it. Presented at BlackHat
2008, 2008.

T. King. Packet sniffing in a switched environment, AUg2@02. ht t p: / / www. sans.

or g/ readi ng_r oon whi t epaper s/ net wor kdevs/ .

A. Klein. BIND 9 DNS cache poisoning, March 2007t t p: / / wwww. t r ust eer . coni

bi nd9dns.

NLnet Labs. Unbound 1.3.4t t p: / / ww. unbound. net/ downl oad. ht i .

P.V. Mockapetris. Domain names - concepts and faalifRFC 1034 (Standard), November
1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2063, 2888, 2535, 4033, 4034,
4035, 4343, 4035, 4592.

P.V. Mockapetris. Domain names - implementation andifipation. RFC 1035 (Standard),
November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1988, 1996, 2065, 2136,
2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4333.4

18

19.

20.

21.

22.

23.

24.
25.

26.

Sooel Son and Vitaly Shmatikov

M. Olnet, P. Mullen, and K. Miklavcic. Dan Kaminsky’'s 200DNS vulnera-
bility, 2008. http://ww. i etf.org/ mail-archi ve/ web/ dnsop/ current/
pdf 2j gx6r zxN4. pdf .

R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. WSEC DIR#tecting recursive DNS
resolvers from poisoning attacks. IN-DCCS, 2009.

V. Sacramento. Vulnerability in the sending requeststrob of Bind version 4 and 8 al-
lows DNS spoofing, November 2002t t p: / / www. r np. br/ cai s/ al ert as/ 2002/
cai s- ALR-19112002a. htm .

C. Schuba. Addessing weaknesses in the domain namensgstéocol, 1993. ht t p:
/1 ftp.cerias. purdue. edu/ pub/ paper s/ chri st oph- schuba/.

Secure Works. DNS cache poisoning - the next generafiofy. http:// waww.
securewor ks. com research/ arti cl es/ dns- cache- poi soni ng.

S. Trenholme. MaraDNS 1.3.07.0&t p: / / www. mar adns. or g.

Computer Academic Underground. http://ww. caughq. or g/ expl oi ts/
CAU- EX- 2008- 0003. t xt .

W. Wijngaards. Resolver side mitigations, August 2008t p: //tool s.ietf. org/
htm /draft-wi jngaards- dnsext-resol ver-side-mitiga%ion-00.

The Hitchhiker's Guide to DNS Cache Poisoning 19

[Get a query from a
client

Query Section : T
www.xxx.com IN A
User

here is an answe

END
The query is
resolved

Oc

NO

Initialize an internal ZONE variable with the value of the closest
authority section to the query in the cache file. QUERY->ZONE = “.”
(If there is no record related to the query, initialize with the value “.")

v
o Find the authoritative server for the authority |
Authoritative Servers section, (QUERY->ZONE). < @
Query Section

www.xxx.com IN A v
Send a query to one of
authoritative servers

12

Receive a response from others

Query Section :
www.xxx.com IN A
Answer Section :

NONE

Authority Section :
xxx.com NS nsi.xxx.com
Additional Section :
nsi.xxx.com A 1.2.3.4 NO

W '

he label of the answ
section is same as the
abel of the given query

rhere is a record in the
answer section

YES

Cache records from the answer
section of the response.

esponse is under or same a
QUERY->ZONE.
(i.e. xxx.com is under

NO-

of the response.
i.e. www.xxx.com is unde
XXX.com)

e response is undet
QUERY->ZONE.
i.e. xxx.com is unde

YES
Cache NS records in the NO
authority section in a response. v

Cache NS records from the
authority section of the
response.

Do not cache the records
from the additional sections.
Initiate a new query with the «—NO
label of additional data. (i.e.

nl.yyy.com)

e-label of record
e additional section is
under

Cache A recc;rds from the
additional section of the
response. YES

v

¥
- Cache A records from the
QUERY->ZONE = the authority additional section of the
section of the response response.

®)

Fig. 5. Bailiwick-checking algorithm of BIND (shaded shapes argliementation-specific).

The query is
resolved

20 Sooel Son and Vitaly Shmatikov
Get a query from a
‘ client
Query Section | ¢ @
www.xxx.com IN A
User END C

given query

NO

Initialize an internal ZONE variable with the value of the closest
authority section to the query in the cache file. QUERY->ZONE = “.”
(If there is no record related to the query, initialize with the value “.")

Query Section
www.xxx.com IN A

Find the authoritative server for the authority |
section, (QUERY->ZONE)

Send a query to one of
authoritative servers

v
s @ ‘ Receive a response from others ‘
Authoritative Servers

| L
MaraDNS Unboundﬁ

In the answer section, erase RRsets
which are out of QUERY->ZONE or
do not match to a query.

here is a record in

v
Erase RRsets out of
QUERY->ZONE
in the auth section.
v

answer section is
same as the label of
he given query

YES
v

Cache records from the
answer section of the
response.

QUERY->ZONE.
i.e. xxx.com is unde

YES
A 4

In the additional section, erase
RRsets which are out of QUERY-
>ZONE or do not match target labels

Cache NS records from
the authority section of
the response.

additional section is same
as one of the labels of
resource records in the
additional sectio

YES
b, 4

Cache the mapping
between the data part of
the additional section and
the label of the authority

section.

in the auth section.

here is a recordhin
answer section and
authoritative bit is-e

Cache records from
the answer section
of the response.

helabel of NS record
in the auth section is
tnder QUERY->ZONE:

abel of thequery

section of the
response

Cache NS records
from the authority
section of the
response.

YES

v

Cache NS records from the
authority section of the
response.

v
Cache A records from the

Cache A records
from the additional
section but do not
send to clients by

default.

additional section but do
not send to clients by
default.
T

Fig. 6. Bailiwick-checking algorithm of
implementation-specific).

Unbound and MaraDNS (skddshapes are

The Hitchhiker's Guide to DNS Cache Poisoning 21

A BIND resolver modd

(ko ko ok ok ok ko kK Kok kKR kK R kK Kok Rk Kk K kK KKk KKk KKk K Rk

* *
* BIND DNS resol ver verifier *
* *

R T T S LR L L TSR R LT ST T S

param r edundant HypEl i m = begi nOnly.
param traceBacktracki ng = fal se.
param traceDi splay = |ong.

free net.
fun NSt/0. fun At/0. fun CNAMEt/O.
fun zeroStage/ 0. fun oneStage/0.

data ValidlP/1. data InvalidlP/ 1.
data ValidDN/ 1. data InvalidDN 1.
data AA/1. data nil/0. data Record/3.

reduc GetSrc (Record(dmSrc, target, recType)) dmSrec.

reduc Get Dst (Record(dmSrc, target, recType)) target.

reduc Get Type (Record(dmSrc, target, recType)) = recType.

reduc GetDnDst (Record(dmSrc, ValidDN(target), recType)) = target.

data Response/ 4.
reduc Get Answer (Response(g1, Record(al,a2,a3), Record(aul,au2, NSt), Record(adl, ad2, At)))
= Record(al, a2, a3).

reduc GetAuth (Response(g1, Record(al,a2,a3), Record(aul,au2, NSt), Record(adl, ad2, At)))
= Record(aul, au2, NSt).
reduc Get Add (Response(g1, Record(al, a2, a3), Record(aul, au2, Nst), Record(adl,ad2, At)))

= Record(adl, ad2, At).
data enptyset/O0.

(* Predicate checking whether it is valid or not *)

pred checkrec/ 1.

cl auses
checkrec: Record(x, lInvalidlP(ip), At);
checkrec: Record(x, InvalidDN(dn), NSt);
checkrec: Record(x, InvalidDN(dn), CNAMEt

pred islnvalid/1.

clauses
islnvalid:Invalidl P(ip);
i slnvalid:InvalidDN(dn).

data zero/0. data succ/1.

pred ga/ 2.

cl auses

ga: succ(x), X;

ga:x,y -> ga:succ(x),y.

data true/0.
data nkNane/ 1. data seedRoot/0.
data dnnBeed/ 0. data cnnBeed/0. data dnm P/ 0.

data ERRORIDO/0. data ERRORIDI1/0. data ERRORI D2/0.
data ERRORID3/0. data ERRORID4/0. data ERRORI D5/0.
data ERRORID6/0. data ERRORID7/0. data ERRORI D8/0.
data AAFLAG 0.

data nmakeSubNane/ 2.
pred i sSubNane/ 2.
clauses
i sSubNarme: x, x;
i sSubNane: makeSubNane(z, x), X;
i sSubNane: x, y -> isSubNane: nekeSubNane(z, x), y.

(* Non-overwritabilities in Section 6.3 for A)

(* query ev: evPoison(At, cached_src_a, dst, |v, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(cached_src_a, cached_dst_a, At), Iva) &ga: lva, lv.
(TRUE: in case, v6,v4 is true, FALSE in case: Vv3{E7},Vv2{E2, E5 E7})

*

)

(* Non-overwritabilities in Section 6.3 for CNAME *)

(* query ev: evPoison(CNAMEt, cached_src_cnane, dst, lv,
cached_src_ns, cached_src_a, cached_src_cnane, eid).

(I mpossible in every case)

*)

(* Properties in Section 6.4)
(* query ev: evPoison(NSt, x, dst, |v, cached_src_ns,
cached_src_a, cached_src_cnane, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)
& isSubNanme: x, zone & isSubNanme: y, zone.

query ev: evPoison(At, x, dst, |v, cached_src_ns,
cached_src_a, cached_src_cnane, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)

22 Sooel Son and Vitaly Shmatikov

& i sSubName: x, zone & isSubNanme: y, zone.

query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns,
cached_src_a, cached_src_cnane, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)
& isSubNanme: x, zone & isSubName: y, zone.

*)

(* Properties in Section 7.1)

(= query ev: evPoison(CNAMEt, x, dst, lv, cached_src_ns, cached_src_a, cached_src_cname, eid)
==>ev: evlnitCache(Record(target, validlP, At), lva).

*

)

(* Properties in Section 7.2 x)

(* query ev: evPoison(At, nekeSubName(bad, goodAuth), invalidlP, Iv,
goodAut h, makeSubNane(good, goodAuth), cached_src_cnanme, eid)
ev: evlnitCache(Record(nmkeSubNane(good, goodAuth), validlP, At), Ilva).
ERRORID 0, 2,3,5,7

*)

(* Properties in Section 7.3 x)

(* query ev: evPoison(At, cached_src_a, dst, |v, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(cached_src_a, cached_dst_a, At), Iva) &ga: lva, lv.
(FALSE: in case: v3{E7}, v2{E2, E5, E7})

*

)

* Properties in Section 7.4 *)

* query ev: evPoison(NSt, cached_src_ns, dst, |v, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(cached_src_ns, cached_dst_ns, NSt), lvns) & ga: lvns, |v.

(FALSE in case any lvns |ower than v6: v5{El}, v3{E1l}, v2{El, E4})

*)

| et processResol ver =

let vO = succ(zero) in let vl = succ(v0) in
let v2 = succ(vl) in let v3 = succ(v2) in
let v4 = succ(v3) in let v5 = succ(v4) in
let v6 = succ(v5) in let v7 = succ(v6) in
let v8 = succ(v7) in

new currentState;
(

(
(* Initialize a cache state. Based on this state, Resolver nodel makes a decision *)
(* At the initial state, the nodel caches three records: A NS, CNAME *)

new magi cZONE;

out (net, magi CZONE);

in (net, (initNSlabel, initC abel, initAl abel));

let nsRoot =

Record(initNSlabel, ValidDN(dnnBeed), NSt) in (* Make a NS type record with a domain nane and specified | P address *)
let aRoot =

Record(initAl abel, ValidlP(dnmiP), At) in (* Make a A type record with a domain name and specified | P address *)

l et cnaneRoot =

Record(initd abel, ValidDN(cnnBeed), CNAMEt) in (* In special case for nodeling CNAME record in cache *)

(* Assert an event declaring cached records with certain trust levels.)

(» Before starting the nodel, User MJUST specify the trust |evel of each record. *)
event evlnitCache(aRoot, v6); (* The trust level of Arecord can be or 6, 4, 3 or 2 *)
event evlnitCache(nsRoot, v5); (* The trust level of NS record can be or 5, 3 or 2 *)
event evlnitCache(cnameRoot, v6); (* The trust level of CNAME record can be or 6 or 4 *)

(* currentState is a private internal channel, It is used for passing cached information to resolving process *)
out(currentState, (zeroStage, cnameRoot, aRoot, nsRoot, magi cCZONE))

(* Get cache information frominit process *)

in(currentState, (=zeroStage, cachedCNAMErecord, cachedArecord, cachedNSrecord, nZONE));
(* Get a query request fromopen channel network.*)

lin(net, (makeSubNane(inputnane, inputzone), inputtype));

let input = nakeSubNane(i nputnane, inputzone) in
event revQuery(input , inputtype); (* Assert an event that a query arrived *)

(* If there is a cached CNAME type record whose label is same as a A or CNAME type query then, resolution ends *)
if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), CNAMEt, CNAMEt) then
(event queryResolved(input, inputtype))

else if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), At, CNAMEt) then
(event queryResol ved(input, inputtype))

(» If there is a cached NS type record whose |abel is sane as a NS type query then, resolution ends *)

else if (input, inputtype) = (GetSrc(cachedNSrecord), NSt) then

(event queryResol ved(input, inputtype))

(» If there is no record matching to a given query nane and type, a recursive query starts. x)

else if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) then

(

let srcNSrecord = GetSrc(cachedNSrecord) in

(* the label of a received query is subdomain of cached NS, other NS:nmZONE or no records *)

The Hitchhiker's Guide to DNS Cache Poisoning 23

if input = srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if isSubName: input, srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if input = mZONE then
out(currentState, (oneStage, nZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if isSubName: input, nZONE then
out(currentState, (oneStage, nZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
el se event resol vingFailed(input)
) (» if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) =)
else (event queryResolved(input, inputtype))

in(currentState, (=oneStage, srcLabel CachedNS, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord));

new dst Label CachedNs;
(* The query nust be a subdomain of ZONE determined by a resolver, otherwise it'Il fail! *)
if isSubName: input, srcLabel CachedNS then
(
(* Because, there is no data, the nodel start a recursive query. *)
out (net, (input, inputtype));
event recursiveQueryStart(input, srcLabel CachedNS, dstLabel CachedNS);

(* And now waiting a response froma AA x)

in(net, (Response(=input,
b, (*Record(=input, ans_target, =inputtype),*)
Record(auth_nane, auth_target, =NSt),
Record(add_nane, add_target, =At)), aa));

let ans =bin
let auth = Record(auth_nane, auth_target, NSt) in
let add = Record(add_nane, add_target, At) in

(* Let’'s check the answer section of the response *)
if GetSrc(ans) <> nil then

if (input,inputtype) = (GetSrc(ans), Get Type(ans)) then
(
if aa = AAFLAG then

(* Check the validity of reponses. But, in this point, our nodel resolver has a power to detect the validity of a response.
if checkrec: ans then
event evPoi son(Get Type(ans), GetSrc(ans), GetDst(ans), V6,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAMEr ecord), ERRORIDO);

if isSubNane: GetSrc(auth), srcLabel CachedNS then

if checkrec: auth then
event evPoi son(NSt, GetSrc(auth), GetDst(auth), v5,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAMVEr ecord), ERRORI DL)
el se

if CGetDst(auth) = GetSrc(add) then
if isSubNane: GetSrc(add), srclLabel CachedNS then
if checkrec: add then
event evPoi son(Get Type(add), GetSrc(add), GCetDst(add), v2,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAMVEr ecord), ERRORI D2)

)
) (= if isSubName: GetSrc(auth), srcLabel CachedNS then «)
) (* if aa = AAFLAG then *)
else (» if a received reponse is not froman authroritative server *)
(
if checkrec: ans then
event evPoi son(Get Type(ans), GetSrc(ans), GetDst(ans), v4,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAMEr ecord), ERRORID3);

if isSubName: GetSrc(auth), srclLabel CachedNS then

if checkrec: auth then
(if aa <> AAFLAG t hen
event evPoison(NSt, GetSrc(auth), GetDst(auth), v2,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAVEr ecord), ERRORI D4)
)

el se

if GetDst(auth) = GetSrc(add) then
if isSubName: GetSrc(add), srcLabel CachedNS then
if checkrec: add then

event evPoi son(Get Type(add), GetSrc(add), GetDst(add), v2,
Get Src(cachedNSrecord), Get Src(cachedArecord),
Get Src(cachedCNAVEr ecord), ERRORI D5)

)
)
)(* else aa = AAFLAG *)
) (* if input = GetSrc(ans) then *)

24 Sooel Son and Vitaly Shmatikov

) (* if GetSrc(ans) <> nil then *)
else if GetSrc(ans) = nil then

if isSubName: input, GetSrc(auth) then
if GetSrc(auth) <> srclLabel CachedNS then
if isSubNane: GetSrc(auth), srcLabel CachedNS then
if checkrec: auth then

event evPoison(NSt, GetSrc(auth), GetDst(auth), v8,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAMEr ecord), ERRORI D6)

)
else (» if checkrec: auth then =)

(* Here, W cache the received NS record because it is valid! =)
if isSubName: GetSrc(add), srclLabel CachedNS then
if GetDst(auth) = GetSrc(add) then
if checkrec: add then
event evPoi son(Get Type(add), GetSrc(add), GetDst(add), v3,
Get Src(cachedNSrecord), GetSrc(cachedArecord),
Get Src(cachedCNAVEr ecord), ERRORI D7)
) (* if checkrec: auth then =)
(* if isSubName: GetSrc(auth), srclLabel CachedNS then *)
) (* if GetSrc(c) <> ZONE *)
else (x if GetSrc(c) = ZONE *)

(
event NSrecordAl readyCached(GetSrc(auth))
) (* else for if GetSrc(c) <> ZONE *)
) (* isSubName: input, GetSrc(auth) *)
) (* if GetSrc(ans) = nil then *)
) (* if isSubName: input, srcLabel CachedNS then *)
el se
(
(* We have no AA for this query, Therefore, the query is failed. *)
event resol vingFailed(input)

).

process
processResol ver

The Hitchhiker's Guide to DNS Cache Poisoning 25

B Unbound resolver model

(ko ko ok ok ok ko kK Kok kKR kK R kK Kok Rk Kk K kK KKk KKk KKk K Rk

* *
* Unbound DNS resol ver verifier *
* *

R T T S LR L L TSR R LT ST T S

param r edundant HypEl i m = begi nOnly.
param traceDi splay = |ong.
param traceBacktracki ng = fal se.

fun NSt/0. fun At/0. fun CNAMEt/O.
fun zeroStage/ 0. fun oneStage/O0.

fun ansChi /0. fun authChiDY 0. fun addChl D/ 0.

data ValidlP/1. data InvalidlP/ 1.
data ValidDN/ 1. data InvalidDN 1.
data AA/1. data nil/0. data Record/3.

reduc GetSrc (Record(dmSrc, target, recType dmSrec.

reduc Get Dst (Record(dmSrc, target, recType target.

reduc Get Type (Record(dmSrc, target, recType)) = recType.

reduc GetDnDst (Record(dmSrc, ValidDN(target), recType)) = target.

)) =
)) =

dat a Response/ 4.
reduc Get Answer Response(g1, Record(al, a2, a3), Record(aul,au2, NSt), Record(adl,ad2, At)))
Record(al, a2, a3) .

Response(g1, Record(al, a2, a3), Record(aul,au2, NSt), Record(adl,ad2, At)))
Record(aul, au2, NSt) .

Response(ql, Record(al,a2,a3), Record(aul, au2, Nst), Record(adl, ad2, At)))
Record(adl, ad2, At).

reduc GetAuth

reduc Get Add

free net.
data enptyset/O0.

(* Predicate checking whether it is valid or not *)

pred checkrec/ 1.

cl auses
checkrec: Record(x, InvalidlP(ip), At);
checkrec: Record(x, InvalidDN(dn), NSt);
checkrec: Record(x, InvalidDN(dn), CNAMEt

pred islnvalid/1.

clauses
islnvalid:Invalidl P(ip);
i slnvalid:InvalidDN(dn).

data zero/0. data succ/1.

pred ga/ 2.
clauses
ga:succ(x), x;
ga:x,y -> ga:succ(x),y.

data true/0. data nkNanme/ 1.
data seedRoot/0. data dnnBeed/0. data dnm P/ 0.

data ERRORIDO/0. data ERRORIDI1/0. data ERRORI D2/0.
data ERRORID3/0. data ERRORID4/0. data ERRORI D5/0.
data ERRORID6/0. data ERRORID7/0. data ERRORI D8/0.
data ERRORI D9/ 0.

data AAFLAG 0. data EXIST/0. data NONEXI ST/ 0.

data makeSubNane/ 2.
pred i sSubNane/ 2.
cl auses
i sSubNanme: x, Xx;
i sSubNane: makeSubNane(z, x), X;
i sSubNane: x, y -> isSubNane: nekeSubNane(z, x), y.

(* Non-overwritabilities in Section 6.3 for A)
(* query ev: evPoison(At, cached_src_a, dst, Iv, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, Iv.
(TRUE: in case, v6,v4 is true, FALSE in case: v3{E7,E8-1, E9-1}, v2{E7, E8, E9})

*)

(* Non-overwritabilities in Section 6.3 for CNAME *)
(* query ev: evPoison(CNAMEt, cached_src_cnane, dst, |v,
cached_src_ns, cached_src_a, cached_src_cname, eid).
(I mpossible in every case)

*)

(+ Properties in Section 6.4)
(* query ev: evPoison(NSt, x, dst, |v, cached_src_ns,
cached_src_a, cached_src_cnane, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)
& i sSubName: x, zone & isSubNanme: y, zone.

26 Sooel Son and Vitaly Shmatikov

query ev: evPoison(At, x, dst, |v, cached_src_ns,
cached_src_a, cached_src_cname, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)
& i sSubName: x, zone & isSubNanme: y, zone.

query ev: evPoison(CNAMEt, x, dst, |v, cached_src_ns,
cached_src_a, cached_src_cnane, eid) ==>
ev: recursiveQueryStart(y, zone, zone_target)
& isSubNanme: x, zone & isSubNanme: y, zone.

Properties in Section 7.1 *)

query ev: evPoison(CNAMEt, x, dst, |v, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(target, validlP, At), lva).

ERRORI D8, ERRORI D7, ERRORI D6

(+ Properties in Section 7.2)
(* query ev: evPoison(At, nekeSubName(bad, goodAuth), invalidlP, Iv,
goodAut h, makeSubNane(good, goodAuth), cached_src_cnane, eid) ==>
ev: evlnitCache(Record(nmkeSubNane(good, goodAuth), validlP, At), Iva).
ERRORIDO, 1, 9, 8, 7

Properties in Section 7.3 x)

query ev: evPoison(At, cached_src_a, dst, |v, cached_src_ns, cached_src_a, cached_src_cnane, eid)
==> ev: evlnitCache(Record(cached_src_a, cached_dst_a, At), lva) & ga: lva, Iv.

(TRUE: in case, v6,v4 is true, FALSE in case: v3{E7,E8-1, E9-1}, v2{E7, E8, E9})

*

)

(* Properties in Section 7.4)

(* query ev: evPoison(NSt, cached_src_ns, dst, lv, cached_src_ns, cached_src_a, cached_src_cnanme, eid)
> ev: evlnitCache(Record(cached_src_ns, cached_dst_ns, NSt), lvns) & ga: lvns, |v.

(FALSE in case any lvns |ower than v6: v5{E4, E5-1}, v3{E4, E5-1}, v2{ E4, E5})

*)

l et processCC =
let vO = zero in let vl = succ(v0) in
let v2 = succ(vl) in let v3 = succ(v2) in
let v4 = succ(v3) in let v5 = succ(v4) in
let v6 = succ(vb) in let v7 = succ(v6) in
let v8 = succ(v7) in

new current St ate;
new ansChannel ;
new aut hChannel ;
new addChannel ;

event StartResolver(currentState);

(
(
(* Initialize a cache state. Based on this state, Resolver nodel nakes a decision *)
(* At the initial state, the nodel caches three records: A NS, CNAME *)
new magi cZONE;

out(net, nmgi cZONE);
in (net, (initNSlabel, initCabel, initAl abel));

let nsRoot =
Record(initNSlabel, ValidDN(dnnBeed), NSt) in (* Make a NS type record with a domain nane and specified | P address *)
let aRoot =
Record(initAlabel, ValidIP(dnmP), At) in (» Make a A type record with a domain name and specified |P address *)

| et cnameRoot =
Record(initC abel, ValidDN(cnnmBeed), CNAMEt) in (* In special case for nodeling CNAME record in cache *)

(* Assert an event declaring cached records with certain trust levels.)

(* Before starting the nodel, User MUST specify the trust level of each record. =*)
event evlnitCache(aRoot, v6); (* The trust level of Arecord can be or 6, 4, 3 or 2 *)
event evlnitCache(nsRoot, v5); (* The trust level of NS record can be or 5, 3 or 2 *)
event evlnitCache(cnameRoot, v6); (* The trust level of CNAME record can be or 6 or 4 *)

(* currentState is a private internal channel, It is used for passing cached information to resolving process *)
out(currentState, (zeroStage, cnameRoot, aRoot, nsRoot, nmgi CZONE))

(* Get cache information frominit process *)

in(currentState, (=zeroStage, cachedCNAMErecord, cachedArecord, cachedNSrecord, nZONE));
(* Get a query request from open channel network.)

in(net, (makeSubName(inputnane, inputzone), inputtype));

let input = nakeSubNane(i nputnane, inputzone) in
event revQuery(input , inputtype); (* Assert an event that a query arrived *)

(* If there is a cached CNAME type record whose label is same as a A or CNAME type query then, resolution ends *)
if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), CNAMEt, CNAMEt) then

(event queryResolved(input, inputtype))

else if (input, inputtype, GetType(cachedCNAMErecord)) = (GetSrc(cachedCNAMErecord), At, CNAMEt) then

(event queryResol ved(input, inputtype))

The Hitchhiker's Guide to DNS Cache Poisoning 27

(* If there is a cached NS type record whose label is sane as a NS type query then, resolution ends *)
else if (input, inputtype) = (GetSrc(cachedNSrecord), NSt) then
(event queryResolved(input, inputtype))
(* If there is no record matching to a given query name and type, a recursive query starts. *)
else if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) then
(
let srcNSrecord = GetSrc(cachedNSrecord) in

if input = srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if isSubName: input, srcNSrecord then
out(currentState, (oneStage, srcNSrecord, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if input = nZONE then
out(currentState, (oneStage, nZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
else if isSubName: input, nZONE then
out(currentState, (oneStage, nZONE, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord))
el se event resol vingFailed(input)
) (» if (input, inputtype) <> (GetSrc(cachedArecord), GetType(cachedArecord)) =)
el se
(event queryResol ved(input, inputtype))

in(currentState, (=oneStage, srcLabel CachedNS, input, inputtype, cachedNSrecord, cachedArecord, cachedCNAMErecord));

new dst Label CachedNS;

(* The query nust be a subdomain name of zone deternined by a resolver, otherwise it'Il fail! «)
if isSubName: input, srclLabel CachedNS then
(

let bailiw ckZone = srcLabel CachedNS in

(* Because, there is no data, the nodel start a recursive query. *)
out(net, (input, inputtype));

event recursiveQueryStart(input, srcLabel CachedNS, dstLabel CachedNS);

(* And now waiting a response froma AA x)

in(net, (Response(=input, b,
Record(aut h_nane, auth_target, =NSt),
Record(add_nane, add_target, =At)), aa));

let ans =bin
let auth = Record(auth_name, auth_target, NSt) in
let add = Record(add_nane, add_target, At) in
(
(
out (ansChannel, (ansChiD, input, inputtype, ans , aa,
bai | i wi ckZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)
I«
if ans <> nil then
out(authChannel, (authChiD, input, inputtype, EXIST, auth, aa,
bai |l i wi ckZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)
I (
if ans <> nil then
out (addChannel, (addChiD , input, inputtype, EXIST, auth, add, aa,
bai | i wi ckZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)
I«
if ans = nil then
out (authChannel, (authChID, input, inputtype, NONEXIST , auth , aa,
bai | i wi ckZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)
I«
if ans = nil then
out (addChannel, (addChiD , input, inputtype, NONEXIST , auth , add, aa,
bai |l i wi ckZone, cachedNSrecord, cachedArecord, cachedCNAMErecord))
)
)

) (+ if isSubName: input, srcLabel CachedNS then)

(* Internal Answer Channel x)
lin (ansChannel, (=ansChlD, inputR, inputtypeR ansR, aaR, bailiw ckZoneR,
cachedNSr ecor dR, cachedArecordR, cachedCNAVErecordR));

if GetType(ansR) <> NSt then
(

if ansR <> nil then

(
if (inputR inputtypeR) = (GetSrc(ansR), GetType(ansR)) then

if isSubName: GetSrc(ansR), bailiw ckZoneR then

(
if aaR = AAFLAG then

(

if checkrec: ansR then

28 Sooel Son and Vitaly Shmatikov

event evPoi son(Get Type(ansR), GetSrc(ansR), GetDst(ansR), v6,

Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAVEr ecor dR),

el se if checkrec: ansR then
event evPoi son(GetType(ansR), GetSrc(ansR), CetDst(ansR), v4,

Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR), ERRORIDL)

))
else if (inputR inputtypeR GetType(ansR)) = (GetSrc(ansR), At, CNAMEt) then
(

if isSubName: GetSrc(ansR), bailiw ckZoneR then

(

if aaR = AAFLAG then
(
if checkrec: ansR then
(
event evPoi son(CNAMEt, GetSrc(ansR), GetDst(ansR), V6,
Get Src(cachedNSr ecor dR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR),
)

el se if checkrec: ansR then
event evPoi son(CNAMEt, GetSrc(ansR), CetDst(ansR), v4,
Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR),

)
) (* else if (inputR inputtypeR GetType(ansR)) = (GetSrc(ansR), At, CNAMEt) then
(+ if (inputR inputtypeR) = (GetSrc(ansR), GetType(ansR)) then =)
) (* if GetType(ansR) <> NSt then *)
)

(* Auth Channel *)
lin (authChannel, (=authChlD, inputR inputtypeR ansR authR aaR, bailiw ckZoneR,
cachedNSr ecor dR, cachedArecordR, cachedCNAMVErecordR));

if isSubNane: GetSrc(authR), bailiw ckZoneR then
(

if (ansR aaR) = (EXI ST, AAFLAG) then
(
if checkrec: authR then (* trust_auth_AA x)
event evPoi son(NSt, GetSrc(authR), GetDst(authR), v5,

ERRORI D2)

ERRORI D3)

*)

Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR), ERRORI D4)

) (+ if (ansR aaR) = (EXI ST, AAFLAG then *)
else if GetSrc(authR) = bailiw ckZoneR then
(
if checkrec: authR then (* trust_auth_AA *)
(
if aaR = AAFLAG then
event evPoison(NSt, GetSrc(authR), GetDst(authR), v5,
Get Src(cachedNSr ecor dR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR),
el se
event evPoison(NSt, GetSrc(authR), GetDst(authR), v2,
Get Src(cachedNSr ecor dR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR),
)

else if isSubName: inputR GetSrc(authR) then
(

if checkrec: authR then (* trust_auth_AA *)

if aaR = AAFLAG t hen
event evPoi son(NSt, GetSrc(authR), GetDst(authR), V5,
Get Src(cachedNSr ecor dR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR),
el se
event evPoison(NSt, GetSrc(authR), GetDst(authR), v2,

ERRORI D5)

ERRORI D5)

ERROR! D6)

Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAMEr ecor dR), ERRORI D6)

)
)
el se

(
event cachingAuthfail (authR)
)
) (* if isSubName: GetSrc(authR), bailiw ckZoneR then x)
(* Add Channel *)
lin (addChannel, (=addChID, inputR inputtypeR ansR authR addR aaR bailiw ckZoneR,
cachedNSrecor dR, cachedArecordR, cachedCNAVErecordR));
if isSubNane: GetSrc(authR), bailiw ckZoneR then
if isSubNane: GetSrc(addR), bailiw ckZoneR then
if GetSrc(addR) = GetDst(authR) then

event gui deEvent3();

if (ansR aaR) = (EXI ST, AAFLAG then

if checkrec: addR then
event evPoi son(At, GetSrc(addR), GetDst(addR), v3,

Get Src(cachedNSrecordR), Get Src(cachedArecordR), Get Src(cachedCNAVEr ecor dR), ERRORI D7)

)

(* else if isSubNane: bailiw ckZoneR, GetSrc(authR) then =*)
else if GetSrc(authR) = bailiw ckZoneR then

ERRORI DO)

The Hitchhiker's Guide to DNS Cache Poisoning

if checkrec: addR then
if aaR = AAFLAG then
event evPoi son(At, GetSrc(addR),
Get Sr c(cachedNSr ecor dR) ,

Get Dst (addR), V3,
Get Sr c(cachedAr ecor dR),
el se
event evPoi son(At, GetSrc(addR),
Get Sr c(cachedNSr ecor dR) ,

Get Dst (addR), v2,
Get Sr c(cachedAr ecor dR),

(* else if isSubNanme: GetSrc(addR),
el se if isSubNane:

(

bai |l i wi ckZoneR then x)
inputR, GetSrc(authR) then

if inputR <> GetSrc(authR) then

if checkrec: addR then
if aaR = AAFLAG then
event evPoison(At, GetSrc(addR), GetDst(addR), v3,
Get Src(cachedNSrecordR), Get Src(cachedArecordR),
el se
event evPoison(At, GetSrc(addR), GetDst(addR), v2,
Get Src(cachedNSrecordR), Get Src(cachedArecordR),
)

el se event cachi ngGLUEfai |l (addR)
)

el se

(
)

event cachi ngGLUEfail (addR)

).

process
processCC

Get Sr c(cachedCNAMEr ecor dR), ERRORI D8)
Get Sr c(cachedCNAMET ecor dR), ERRORI D8)
Get Src(cachedCNAVEr ecor dR), ERRORI D9)
Get Sr c(cachedCNAVEr ecor dR), ERRORI D9)

29

